• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

IRB PD Model Accuracy Validation in the Presence of Default Correlation: a Twin Confidence Interval Approach

The BIS indicated in July 2020 an unprecedented rise in default risk correlation as a result of pandemics-induced credit risks’ accumulation. A third of the world banking assets credit risk measurement depends on the Basel internal-ratings-based (IRB) models. To ensure financial stability, we wish IRB models to be accurate in default probability (PD) forecasting. There naturally arises a question of which model may be deemed accurate if the data demonstrates the presence of the default correlation. The existing prudential IRB validation guidelines suggest a confidence interval of up to 100 percentage points’ length for such a case. Such an interval is useless as any model and any PD forecast seem accurate. The novelty of this paper is the justification for the use of twin confidence intervals to validate PD model accuracy. Those intervals more concentrate around the two extremes (default and its absence), the higher the default correlation is.