### Article

## Evolution of localized magnetic field perturbations and the nature of turbulent dynamo

Kinematic dynamo in incompressible isotropic turbulent flows with high magnetic Prandtl number is considered. The approach interpreting an arbitrary magnetic field distribution as a superposition of localized perturbations (blobs) is developed. We derive a general relation between stochastic properties of an isolated blob and a stochastically homogenous distribution of magnetic field advected by the same stochastic flow. This relation allows us to investigate the evolution of a localized blob at a late stage when its size exceeds the viscous scale. It is shown that in three-dimensional flows, the average magnetic field of the blob increases exponentially in the inertial range of turbulence, as opposed to the late-batchelor stage when it decreases. Our approach reveals the mechanism of dynamo generation in the inertial range both for blobs and homogenous contributions. It explains the absence of dynamo in the two-dimensional case and its efficiency in three dimensions. We propose a way to observe the mechanism in numerical simulations

We suggest a new model of the fast nondissipative kinematic dynamo which describes the phenomenon of exponential growth of the magnetic eld caused by the motion of the conducting medium. This phenomenon is known to occur in the evolution of magnetic elds of astrophysical bodies. In the 1970s A.D. Sakharov and Ya.B. Zeldovich proposed a \rope" scheme of this process which in terms of the modern theory of dynamical systems can be described as Smale solenoid. The main disadvantage of this scheme is that it is non-conservative. Our model is a modication of the Sakharov-Zeldovich's model. We apply methods of the theory of dynamical systems to prove that it is free of this fault in the neighborhood of the nonwandering set.

We analyze magnetic kinematic dynamo in a conducting fluid where the stationary shear flow is accompanied by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing divergence of the Lagrangian trajectories. The magnetic field correlation functions are examined, we establish their growth rates and scaling behavior. General assertions are illustrated by explicit solution of the model where the velocity field is short-correlated in time.

The plasma contactor model is described. The length of effective collection radius for electric current, the current limit and the nessesary potential difference are culculated in the case of spherical symmetry. The magnetic field influence on the collection radius length is analised. For the plane perpendecular to the magnetic field the calculation of plasma cloud parameters on the base of one-dimensional model is fulfilled.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.