• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Macdonald polynomials and extended Gelfand–Tsetlin graph

Using Okounkov’s q-integral representation of Macdonald polynomials we construct an infinite sequence Ω1,Ω2,Ω3,… of countable sets linked by transition probabilities from Ω𝑁 to Ω𝑁−1 for each 𝑁=2,3,…. The elements of the sets Ω𝑁 are the vertices of the extended Gelfand–Tsetlin graph, and the transition probabilities depend on the two Macdonald parameters, q and t. These data determine a family of Markov chains, and the main result is the description of their entrance boundaries. This work has its origin in asymptotic representation theory. In the subsequent paper, the main result is applied to large-N limit transition in (qt)-deformed N-particle beta-ensembles.