### Article

## Слайд-комплексы и комплексы подслов

We prove new determinantal identities for a family of flagged Schur polynomials. As a corollary of these identities we obtain determinantal expressions of Schubert polynomials for certain vexillary permutations.

We use polyhedral product models to analyse the structure of the commutator subgroup of a right-angled Artin group. In particular, we provide a minimal set of generators for the commutator subgroup, consisting of special iterated commutators of canonical generators.

In this paper we propose probability-theoretic approach to compare intervals with rigorous bounds which opens a door to more adequate forms of representation and processing of expert estimates uncertainty

The material of the present paper is grounded on the holist algebraic method (Q-analysis) proposed by English mathematician and physicist R.H.Atkin. At its core, the approach is aimed at both analysis of systems structures (in the form of simplicial complexes K, which is formed by a set of properly adjoined objects called simplexes) and calculation of numeric estimates of structural complexity of systems based on the results of such analysis.

Turning complexity estimate of system’s structure into a real number creates additional difficulties in the comparison of two different complexes because there is no real verbal scale, which would have been accustomed to human beings and would allow a group of experts to express opinions and draw easily conclusions about degree of complexity of K at each particular dimensional level of its analysis. Therefore, the present paper deals with consideration of the approach that is more focused on human perception of characteristics obtained, mental comprehension and formation (comparison) of personal constructs in psychological space (or, P-space) – modified structural complexity estimate is based right on notions of distance and similarity within psychological space.

We define simplicial complexes for slide polynomials and show that they are always homeomorphic to balls or spheres.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.