### Article

## An accelerated directional derivative method for smooth stochastic convex optimization

We consider smooth stochastic convex optimization problems in the context of algorithms which are based on directional derivatives of the objective function. This context can be considered as an intermediate one between derivative-free optimization and gradient-based optimization. We assume that at any given point and for any given direction, a stochastic approximation for the directional derivative of the objective function at this point and in this direction is available with some additive noise. The noise is assumed to be of an unknown nature, but bounded in the absolute value. We underline that we consider directional derivatives in *any* direction, as opposed to coordinate descent methods which use only derivatives in coordinate directions. For this setting, we propose a non-accelerated and an accelerated directional derivative method and provide their complexity bounds. Our non-accelerated algorithm has a complexity bound which is similar to the gradient-based algorithm, that is, without any dimension-dependent factor. Our accelerated algorithm has a complexity bound which coincides with the complexity bound of the accelerated gradient-based algorithm up to a factor of square root of the problem dimension. We extend these results to strongly convex problems.

In this paper we consider the task of inner objects mapping for the building with a bunch of moving around it autonomous agents which use narrow beam of radio waves using WiFi frequency (2.4 GHz). Linear model of pixel-wise radio waves attenuation is considered. SIRT algorithm with TV and Tikhonov regularizations is used for the task of tomography reconstruction. Properties of the presented model are studied during simulation using synthetic data consisting of 8 buildings with inner object with different shapes. Dependency between mapping quality and transmission power is found. Simulation results confirm suggested approachs usability

The design problems of robust static controllers for discrete-time systems with norm- bounded parametric uncertainties and random input disturbances are considered. The con- trollers under consideration stabilize the plant for all possible values of uncertainty from a given set of parameters and also guarantee a desired suppression level for random exogenous disturbances. A numerical example is given.

In this paper, a new variant of accelerated gradient descent is proposed. The proposed method does not require any information about the objective function, uses exact line search for the practical accelerations of convergence, converges according to the well-known lower bounds for both convex and non-convex objective functions, possesses primal–dual properties and can be applied in the non-euclidian set-up. As far as we know this is the first such method possessing all of the above properties at the same time. We also present a universal version of the method which is applicable to non-smooth problems. We demonstrate how in practice one can efficiently use the combination of line-search and primal-duality by considering a convex optimization problem with a simple structure (for example, linearly constrained)

Modern imaging methods rely strongly on Bayesian inference techniques to solve challenging imaging problems. Currently, the predominant Bayesian computation approach is convex optimization, which scales very efficiently to high-dimensional image models and delivers accurate point estimation results. However, in order to perform more complex analyses, for example, image uncertainty quantification or model selection, it is necessary to use more computationally intensive Bayesian computation techniques such as Markov chain Monte Carlo methods. This paper presents a new and highly efficient Markov chain Monte Carlo methodology to perform Bayesian computation for high-dimensional models that are log-concave and nonsmooth, a class of models that is central in imaging sciences. The methodology is based on a regularized unadjusted Langevin algorithm that exploits tools from convex analysis, namely, Moreau--Yoshida envelopes and proximal operators, to construct Markov chains with favorable convergence properties. In addition to scaling efficiently to high-dimensions, the method is straightforward to apply to models that are currently solved by using proximal optimization algorithms. We provide a detailed theoretical analysis of the proposed methodology, including asymptotic and nonasymptotic convergence results with easily verifiable conditions, and explicit bounds on the convergence rates. The proposed methodology is demonstrated with four experiments related to image deconvolution and tomographic reconstruction with total-variation and $\ell_1$ priors, where we conduct a range of challenging Bayesian analyses related to uncertainty quantification, hypothesis testing, and model selection in the absence of ground truth.

In this paper we introduce a unified analysis of a large family of variants of proximal stochastic gradient descent (SGD) which so far have required different intuitions, convergence analyses, have different applications, and which have been developed separately in various communities. We show that our framework includes methods with and without the following tricks, and their combinations: variance reduction, importance sampling, mini-batch sampling, quantization, and coordinate sub-sampling. As a by-product, we obtain the first unified theory of SGD and randomized coordinate descent (RCD) methods, the first unified theory of variance reduced and non-variance-reduced SGD methods, and the first unified theory of quantized and non-quantized methods. A key to our approach is a parametric assumption on the iterates and stochastic gradients. In a single theorem we establish a linear convergence result under this assumption and strong-quasi convexity of the loss function. Whenever we recover an existing method as a special case, our theorem gives the best known complexity result. Our approach can be used to motivate the development of new useful methods, and offers pre-proved convergence guarantees. To illustrate the strength of our approach, we develop five new variants of SGD, and through numerical experiments demonstrate some of their properties.

We consider convex optimization problems with the objective function having Lipshitz-continuous p-th order derivative, where p ≥ 1. We propose a new tensor method, which closes the gap between the lower O ε − 2 3p+1 and upper O ε − 1 p+1 iteration complexity bounds for this class of optimization problems. We also consider uniformly convex functions, and show how the proposed method can be accelerated under this additional assumption. Moreover, we introduce a p-th order condition number which naturally arises in the complexity analysis of tensor methods under this assumption. Finally, we make a numerical study of the proposed optimal method and show that in practice it is faster than the best known accelerated tensor method. We also compare the performance of tensor methods for p = 2 and p = 3 and show that the 3rd-order method is superior to the 2nd-order method in practice. Keywords: Convex optimization, unconstrained minimization, tensor methods, worst-case complexity, global complexity bounds, condition number.

We study the complexity of approximating the Wasserstein barycenter of m discrete measures, or histograms of size n, by contrasting two alternative approaches that use entropic regularization. The first approach is based on the Iterative Bregman Projections (IBP) algorithm for which our novel analysis gives a complexity bound proportional to $m n^2 / \epsilon^2$ to approximate the original non-regularized barycenter. On the other hand, using an approach based on accelerated gradient descent, we obtain a complexity proportional to $m n^2 / \epsilon$. As a byproduct, we show that the regularization parameter in both approaches has to be proportional to $\epsilon$, which causes instability of both algorithms when the desired accuracy is high. To overcome this issue, we propose a novel proximal-IBP algorithm, which can be seen as a proximal gradient method, which uses IBP on each iteration to make a proximal step. We also consider the question of scalability of these algorithms using approaches from distributed optimization and show that the first algorithm can be implemented in a centralized distributed setting (master/slave), while the second one is amenable to a more general decentralized distributed setting with an arbitrary network topology.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

Existing approaches suggest that IT strategy should be a reflection of business strategy. However, actually organisations do not often follow business strategy even if it is formally declared. In these conditions, IT strategy can be viewed not as a plan, but as an organisational shared view on the role of information systems. This approach generally reflects only a top-down perspective of IT strategy. So, it can be supplemented by a strategic behaviour pattern (i.e., more or less standard response to a changes that is formed as result of previous experience) to implement bottom-up approach. Two components that can help to establish effective reaction regarding new initiatives in IT are proposed here: model of IT-related decision making, and efficiency measurement metric to estimate maturity of business processes and appropriate IT. Usage of proposed tools is demonstrated in practical cases.