### Article

## Dynamics of Phase Synchronization between Solar Polar Magnetic Fields Assessed with Van Der Pol and Kuramoto Models

We establish the similarity in two model-based reconstructions of the coupling between the polar magnetic fields of the Sun represented by the solar faculae time series. The reconstructions are inferred from the pair of the coupled oscillators modelled with the Van der Pol and Kuramoto equations. They are associated with the substantial simplification of solar dynamo models and, respectively, a simple ad hoc model reproducing the phenomenon of synchronization. While the polar fields are synchronized, both of the reconstruction procedures restore couplings, which attain moderate values and follow each other rather accurately as the functions of time. We also estimate the evolution of the phase difference between the polar fields and claim that they tend to move apart more quickly than approach each other

In this paper, we propose an adaptive model of data storage in a heterogeneous distributed cloud environment. Our system utilizes the methods of secret sharing schemes and error correction codes based on Redundant Residue Number System (RRNS). We consider data uploading, storing and downloading. To minimize data access, we use data transfer mechanism between cloud providers. We provide theoretical analysis and experimental evaluation of our scheme with six real data storage providers. We show how dynamic adaptive strategies not only increase security, reliability, and reduction of data redundancy but allow processing encrypted data. We also discuss potentials of this approach, and address methods for mitigating the risks of confidentiality, integrity, and availability associated with the loss of information, denial of access for a long time, and information leakage.

In our earlier studies, we found the effect of non-conventional synchronization, which is a specific type of nonlinear stable beating in the system of two weakly coupled autogenerators with hard excitation given by generalized van der Pol-Duffing characteristics. The corresponding synchronized dynamics are due to a new type of attractor in a reduced phase space of the system. In the present work, we show that, as the strength of nonlinear stiffness and dissipation are changing, the phase portrait undergoes a complicated evolution leading to a quite unexpected appearance of difficult to detect “repellers” separating a stable limit cycle and equilibrium points in the phase plane. In terms of the original coordinates, the limit cycle associates with nonlinear beatings while the stationary points correspond to the stationary synchronous dynamics similar to the so-called nonlinear local modes.

We study the stability conditions of the multiserver queueing system in which each customer requires a random number of servers simultaneously. The input flow is supposed to be a regenerative one and service times of a given customer are independent at the occupied servers. The service time has an exponential, phase-type or hyper-exponential distribution. We define an auxiliary service process that is the number of completed services by all m servers under the assumption that there are always customers in the system. Then we construct the sequence of common regeneration points for the regenerative input flow and the auxiliary service process. It allows us to deduce the stability criterion of the model under consideration. It turns out that the stability condition does not depend on the structure of the input flow, only the rate of this process plays a role. Nevertheless the distribution of the service time is a very important factor. We give examples which show that the stability condition can not be expressed in terms of the mean of the service time.

We analyzed a generic relaxation oscillator under moderately strong forcing at a frequency much greater that the natural intrinsic frequency of the oscillator. Additionally, the forcing is of the same sign and, thus, has a nonzero average, matching neuroscience applications. We found that, first, the transition to high-frequency synchronous oscillations occurs mostly through periodic solutions with virtually no chaotic regimes present. Second, the amplitude of the high-frequency oscillations is large, suggesting an important role for these oscillations in applications. Third, the 1:1 synchronized solution may lose stability, and, contrary to other cases, this occurs at smaller, but not at higher frequency differences between intrinsic and forcing oscillations. We analytically built a map that gives an explanation of these properties. Thus, we found a way to substantially “overclock” the oscillator with only a moderately strong external force. Interestingly, in application to neuroscience, both excitatory and inhibitory inputs can force the high-frequency oscillations.

This paper is focused on stability conditions of a multi-server queueing system with regenerative input flow where a random number of servers is simultaneously required for each customer and each server's completion time is constant. It turns out that the stability condition depends on the rate of the input flow and not on its structure.

Challenges to simulate networks of weakly coupled oscillators using circuit simulators are considered. The approach based on the special locking function is presented. The application of system of the phase equations based on locking functions for estimation of locking range of weakly coupled oscillator networks is shown.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.