• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Cluster-Based Optimization of an Evacuation Process Using a Parallel Bi-Objective Real-Coded Genetic Algorithm

Cybernetics and Information Technologies. 2020. Vol. 20. No. 3. P. 45-63.
Akopov A. S., Beklaryan L. A., Beklaryan A. L.

This work presents a novel approach to the design of a decision-making system for the cluster-based optimization of an evacuation process using a Parallel bi-objective Real-Coded Genetic Algorithm (P-RCGA). The algorithm is based on the dynamic interaction of distributed processes with individual characteristics that exchange the best potential decisions among themselves through a global population. Such an approach allows the HyperVolume performance metric (HV metric) as reflected in the quality of the subset of the Pareto optimal solutions to be improved. The results of P-RCGA were compared with other well-known multi-objective genetic algorithms (e.g., MOEA, NSGA-II, SPEA2). Moreover, P-RCGA was aggregated with the developed simulation of the behavior of human agent-rescuers in emergency through the objective functions to optimize the main parameters of the evacuation process.