### ?

## Representation theoretic realization of non-symmetric Macdonald polynomials at infinity

Journal fuer die reine und angewandte Mathematik. 2020. Vol. 764. P. 181-216.

We study the non-symmetric Macdonald polynomials specialized at infinity from various points of view. First, we define a family of modules of the Iwahori algebra whose characters are equal to the non-symmetric Macdonald polynomials specialized at infinity. Second, we show that these modules are isomorphic to the dual spaces of sections of certain sheaves on the semi-infinite Schubert varieties. Third, we prove that the global versions of these modules are homologically dual to the level one affine Demazure modules for simply-laced Dynkin types except for type $E_8$

Feigin E., Makedonskyi I., / Cornell University. Series math "arxiv.org". 2014. No. 1407.6316.

The Cherednik-Orr conjecture expresses the t\to\infty limit of the nonsymmetric Macdonald polynomials in terms of the PBW twisted characters of the affine level one Demazure modules. We prove this conjecture in several special cases. ...

Added: August 10, 2014

Cherednik I., Feigin E., Advances in Mathematics 2015 Vol. 282 P. 220-264

Given a reduced irreducible root system, the corresponding nil-DAHA is used to calculate the extremal coefficients of nonsymmetric Macdonald polynomials in the limit t→∞ and for antidominant weights, which is an important ingredient of the new theory of nonsymmetric q-Whittaker function. These coefficients are pure q-powers and their degrees are expected to coincide in the ...

Added: September 3, 2015

Feigin E., Makedonskyi I., Orr D., Advances in Mathematics 2018 Vol. 330 P. 997-1033

We introduce generalized global Weyl modules and relate their graded characters to nonsymmetric Macdonald polynomials and nonsymmetric q-Whittaker functions. In particular, we show that the series part of the nonsymmetric q-Whittaker function is a generating function for the graded characters of generalized global Weyl modules. ...

Added: September 13, 2018

Finkelberg M., Braverman A., Shiraishi J., Providence : American Mathematical Society, 2014

Let G be an almost simple simply connected complex Lie group, and let G/U be its base affine space. In this paper we formulate a conjecture which provides a new geometric interpretation of the Macdonald polynomials associated to G via perverse coherent sheaves on the scheme of formal arcs in the affinizationof G/U. We prove ...

Added: March 5, 2015

Feigin B. L., Hashizume K. undefined., Hoshino A. et al., Journal of Mathematical Physics 2009 Vol. 50 No. 9 P. 095215-1-095215-42

We introduce a unital associative algebra associated with degenerate CP1. We show that is a commutative algebra and whose Poincare' series is given by the number of partitions. Thereby, we can regard as a smooth degeneration limit of the elliptic algebra introduced by Feigin and Odesskii [Int. Math. Res. Notices 11, 531 (1997)]. Then we ...

Added: January 25, 2013

Shirokov D., Journal of Geometry and Symmetry in Physics 2016 Vol. 42 P. 73-94

In this paper we consider some Lie groups in complexified Clifford algebras. Using relations between operations of conjugation in Clifford algebras and matrix operations we prove isomorphisms between these groups and classical matrix groups (symplectic, orthogonal, linear, unitary) in the cases of arbitrary dimension and arbitrary signature. Also we obtain isomorphisms of corresponding Lie algebras ...

Added: December 14, 2016

Finkelberg M. V., MATHEMATICAL SCIENCES 2013 Vol. 51 No. 596 P. 46-51

This is a survey of the author's and his collaboratots' recent works on the quasiflags' moduli spaces introduced by Gerard Laumon some 25 years ago. These spaces are used in the study of geometric Eisenstein series, quantum cohomology and K-theory of the flag varieties, Weyl modules, Nekrasov partition function of N=2 supersymmetric gauge quantum field ...

Added: February 14, 2013

Feigin E., Kato S., Makedonskyi I., / Cornell University. Series math "arxiv.org". 2017. No. 1703.04108.

We study the nonsymmetric Macdonald polynomials specialized at infinity from various points of view. First, we define a family of modules of the Iwahori algebra whose characters are equal to the nonsymmetric Macdonald polynomials specialized at infinity. Second, we show that these modules are isomorphic to the dual spaces of sections of certain sheaves on ...

Added: March 20, 2017

Feigin B. L., Russian Mathematical Surveys 2017 Vol. 72 No. 4 P. 707-763

This paper discusses the main known constructions of vertex operator algebras. The starting point is the lattice algebra. Screenings distinguish subalgebras of lattice algebras. Moreover, one can construct extensions of vertex algebras. Combining these constructions gives most of the known examples. A large class of algebras with big centres is constructed. Such algebras have applications ...

Added: November 5, 2020

Feigin E., Cherednik I., / Cornell University. Series math "arxiv.org". 2013. No. arXiv:1306.3146.

Given a reduced irreducible root system, the corresponding nil-DAHA is used to calculate the extremal coefficients of nonsymmetric Macdonald polynomials, also called E-polynomails, in the limit t=infinity and for antidominant weights, which is an important ingredient of the new theory of nonsymmetric q-Whittaker function. These coefficients are pure q-powers and their degrees are expected to ...

Added: June 24, 2013

Olshanski G., Working papers by Cornell University. Series math "arxiv.org" 2020

Using Okounkov's q-integral representation of Macdonald polynomials we construct an infinite sequence Ω1,Ω2,Ω3,… of countable sets linked by transition probabilities from ΩN to ΩN−1 for each N=2,3,…. The elements of the sets ΩN are the vertices of the extended Gelfand-Tsetlin graph, and the transition probabilities depend on the two Macdonald parameters, q and t. These ...

Added: January 19, 2021

Olshanski G., Communications in Mathematical Physics 2021 Vol. 385 P. 595-631

We introduce and study a family of (q, t)-deformed discrete N-particle beta ensembles, where q and t are the parameters of Macdonald polynomials. The main result is the existence of a large-N limit transition leading to random point processes with infinitely many particles. ...

Added: June 22, 2021

Feigin E., Makedonskyi I., / Cornell University. Series arXiv "math". 2015. No. 1507.01362.

The main goal of our paper is to establish a connection between the Weyl modules of the current Lie superalgebras (twisted and untwisted) attached to osp(1,2) and the nonsymmetric Macdonald polynomials of types $A_2^2$ and ${A_2}^{2\dagger}$ . We compute the dimensions and construct bases of the Weyl modules. We also derive explicit formulas for the ...

Added: July 8, 2015

Feigin E., Journal of Lie Theory 2019 Vol. 29 No. 4 P. 927-940

The Littlewood-Richardson coefficients describe the decomposition of tensor products of irreducible representations
of a simple Lie algebra into irreducibles. Assuming the number of factors is large, one gets a measure on the space of weights. This limiting measure was extensively studied by many authors. In particular, Kerov computed the corresponding density in a special case in ...

Added: December 9, 2019

Shirokov D., Марчук Н. Г., Красанд/URSS, 2020

The book deals with several actual branches of Clifford algebra theory. Clifford algebras are used in mathematics, physics, mechanics, engineering, signal processing, etc. We discuss in details a representation theory of Clifford algebras. Also we discuss the connection between spin and orthogonal groups, Pauli theorem. We develop a method of quaternion typification of Clifford algebra ...

Added: December 11, 2020

Окубо Ю. undefined., Journal of Physics: Conference Series 2017 Vol. 804 No. 012036 P. 1-8

We investigate the existence and the orthogonality of the generalized Jack symmetric functions which play an important role in the AGT relations. We show their orthogonality by deforming them to the generalized Macdonald symmetric functions. ...

Added: October 26, 2017

Feigin E., Makedonskyi I., / Cornell University. Series math "arxiv.org". 2015. No. 1512.03254.

The classical local Weyl modules for a simple Lie algebra are labeled by dominant weights. We generalize the definition to the case of arbitrary weights and study the properties of the generalized modules. We prove that the representation theory of the generalized Weyl modules can be described in terms of the alcove paths and the ...

Added: December 15, 2015

Васильев М., Zabrodin A., Zotov A., Nuclear Physics B - Proceedings Supplements 2020 Vol. 952 No. 114931 P. 1-20

We establish a remarkable relationship between the quantum Gaudin models with boundary and the classical many-body integrable systems of Calogero-Moser type associated with the root systems of classical Lie algebras (B, C and D). We show that under identification of spectra of the Gaudin Hamiltonians HjG with particles velocities q˙j of the classical model all ...

Added: August 20, 2020

Olshanski G., Selecta Mathematica, New Series 2021 Vol. 27 Article 41

Using Okounkov’s q-integral representation of Macdonald polynomials we construct an infinite sequence Ω1,Ω2,Ω3,… of countable sets linked by transition probabilities from Ω𝑁 to Ω𝑁−1 for each 𝑁=2,3,…. The elements of the sets Ω𝑁 are the vertices of the extended Gelfand–Tsetlin graph, and the transition probabilities depend on the two Macdonald parameters, q and t. These ...

Added: June 4, 2021

Burman Y. M., / Cornell University. Series math "arxiv.org". 2013. No. 1309.4477.

Given a representation V of a group G, there are two natural ways of defining a representation of the group algebra k[G] in the external power V^{\wedge m}. The set L(V) of elements of k[G] for which these two ways give the same result is a Lie algebra and a representation of G. For the ...

Added: November 19, 2013

Khoroshkin A., / arXiv.org. Series 1312.7053 "1312". 2013. No. 1312.7053.

The aim of this paper is to introduce the categorical setup which helps us to relate the theory of Macdonald polynomials and the theory of Weyl modules for current Lie algebras discovered by V.\,Chari and collaborators. We identify Macdonald pairing with the homological pairing on the ring of characters of the Lie algebra of currents. ...

Added: February 14, 2014

Bezrukavnikov R., Ivan Losev, / Cornell University. Series arXiv "math". 2017. No. 1708.01385.

Added: October 9, 2017

Vologodsky V., Finkelberg M. V., Bezrukavnikov R., Cambridge Journal of Mathematics 2014 Vol. 2 No. 2 P. 163-190

Marc Haiman has reduced Macdonald Positivity Conjecture to a statement about geometry of the Hilbert scheme of points on the plane, and formulated a generalization of the conjecture where the symmetric group is replaced by the wreath product of S_n and Z/rZ. He has proven the original conjecture by establishing the geometric statement about the ...

Added: December 17, 2015

Makedonskyi I., / Cornell University. Series arXiv "math". 2012.

We give a criterion of tameness and wildness for a finite-dimensional Lie algebra over an algebraically closed field. ...

Added: December 3, 2018