### Article

## Unstable polarized del Pezzo surfaces

We provide new examples of -unstable polarized smooth del Pezzo surfaces using a flopped version first used by Cheltsov and Rubinstein of the test configurations introduced by Ross and Thomas. As an application, we provide new obstructions for the existence of constant scalar curvature Kähler metrics on polarized smooth del Pezzo surfaces.

In a previous paper we established that for any del Pezzo surface Y of degree at least 4, the affine cone X over Y embedded via a pluri-anticanonical linear system admits an effective Ga-action. In particular, the group Aut(X) is infinite dimensional. In contrast, we show in this note that for a del Pezzo surface Y of degree at most 2 the generalized cones X as above do not admit any non-trivial action of a unipotent algebraic group.

Let $\bbk$ be a field of characteristic zero and $G$ be a finite group of automorphisms of projective plane over $\bbk$. Castelnuovo's criterion implies that the quotient of projective plane by $G$ is rational if the field $\bbk$ is algebraically closed. In this paper we prove that $\mathbb{P}^2_{\bbk} / G$ is rational for an arbitrary field $\bbk$ of characteristic zero.

This article is concerned with an observation for proving non-existence of canonical Kahler metrics. The idea is to use a rather explicit type of degeneration that applies in many situations. Namely, in a variation on a theme introduced by Ross-Thomas, we consider flops of the deformation to the normal cone. This yields a rather widely applicable notion of stability that is still completely explicit and readily computable, but with wider scope. We describe some applications, among them, a proof of one direction of the Calabi conjecture for asymptotically logarithmic del Pezzo surfaces.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.