### Article

## Large tensor products and Littlewood-Richardson coefficients

The Littlewood-Richardson coefficients describe the decomposition of tensor products of irreducible representations

of a simple Lie algebra into irreducibles. Assuming the number of factors is large, one gets a measure on the space of weights. This limiting measure was extensively studied by many authors. In particular, Kerov computed the corresponding density in a special case in type A and Kuperberg gave a formula for the general case. The goal of this paper is to give a short, self-contained and pure Lie theoretic proof of the formula for the density of the limiting measure. Our approach is based on the link between the limiting measure induced by the Littlewood-Richardson coefficients and the measure defined by the weight multiplicities of the tensor products.

Let K be a ﬁeld and A be a commutative associative K-algebra which is an integral domain. The Lie algebra DerA of all K-derivations of A is an A-module in a natural way and if R is the quotient ﬁeld of A then RDerA is a vector space over R. It is proved that if L is a nilpotent subalgebra of RDerA of rank k over R (i.e. such that dimR RL = k), then the derived length of L is at most k and L is ﬁnite dimensional over its ﬁeld of constants. In case of solvable Lie algebras over a ﬁeld of characteristic zero their derived length does not exceed 2k. Nilpotent and solvable Lie algebras of rank 1 and 2 (over R) from the Lie algebra RDerA are characterized. As a consequence we obtain the same estimations for nilpotent and solvable Lie algebras of vector ﬁelds with polynomial, rational, or formal coeﬃcients.

We introduce a unital associative algebra associated with degenerate CP1. We show that is a commutative algebra and whose Poincare' series is given by the number of partitions. Thereby, we can regard as a smooth degeneration limit of the elliptic algebra introduced by Feigin and Odesskii [Int. Math. Res. Notices 11, 531 (1997)]. Then we study the commutative family of the Macdonald difference operators acting on the space of symmetric functions. A canonical basis is proposed for this family by using and the Heisenberg representation of the commutative family studied by Shiraishi [ Commun. Math. Phys. 263, 439 (2006)]. It is found that the Ding-Iohara algebra [Lett. Math. Phys. 41, 183 (1997)] provides us with an algebraic framework for the free field construction. An elliptic deformation of our construction is discussed, showing connections with the Drinfeld quasi-Hopf twisting [Leningrad Math. J. 1, 1419 (1990)] in the sence of Babelon-Bernard-Billey [Phys. Lett. B. 375, 89 (1996)], the Ruijsenaars difference operator [Commun. Math. Phys. 110, 191 (1987)], and the operator M(q,t1,t2) of Okounkov-Pandharipande [e-print arXiv:math-ph/0411210].

We discuss some well-known facts about Clifford algebras: matrix representations, Cartan’s periodicity of 8, double coverings of orthogonal groups by spin groups, Dirac equation in different formalisms, spinors in <span data-mathml="nn dimensions, etc. We also present our point of view on some problems. Namely, we discuss the generalization of the Pauli theorem, the basic ideas of the method of averaging in Clifford algebras, the notion of quaternion type of Clifford algebra elements, the classification of Lie subalgebras of specific type in Clifford algebra, etc.

We establish the absence of zero divisors in the reduction algebra of a Lie algebra {Mathematical expression} with respect to its reductive Lie subalgebra {Mathematical expression}. We identify the field of fractions of the diagonal reduction algebra of {Mathematical expression} with the standard skew field; as a by-product we obtain a two-parametric family of realizations of this diagonal reduction algebra by differential operators. We also present a new proof of the Poincaré-Birkhoff-Witt theorem for reduction algebras.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.