• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Interaction between PFC neural networks ultra-slow fluctuations and brain oscillations

Rooy M., Novikov N., Gutkin B.

The aim of our work was to study the influence of the different brain rhythms (i.e. theta, beta, gamma ranges with frequencies from 5 Hz to 80 Hz) on the ultra slow oscillations (USOs with frequency of 0.5 Hz and below), where high and low activity states alternate. The USOs is usually observed within neural activity in the human brain and in the prefrontal cortex in particular during rest. The USOs are considered to be generated by the local cortical circuitry together with pulse-like inputs and neuronal noise. Structure of the USOs shows specific statistics and their characteristics has been connected with cognitive abilities, such as working memory performance and capacity. In our study we used the previously constructed computational model describing activity of a cortical circuit consisting of the populations of pyramidal cells and interneurons.  This model was developed to mimic global input impinging on the local PFC circuit from other cortical areas or subcortical structures. The studied the model dynamics numerically.  We found that frequency increase deferentially lengthens the up states and therefore increases stability of self-sustained activity with oscillations in the gamma band. We argue that such effects would be beneficial to information processing and transfer in cortical networks with hierarchical inhibition.