### Article

## Deep inelastic scattering structure functions of holographic spin-1 hadrons with Nf ≥ 1

Two-point current correlation functions of the large *N* limit of supersymmetric and non-supersymmetric Yang-Mills theories at strong coupling are investigated in terms of their string theory dual models with quenched flavors. We consider non-Abelian global symmetry currents, which allow one to investigate vector mesons with *N* *f* *>* 1. From the correlation functions we construct the deep inelastic scattering hadronic tensor of spin-one mesons, obtaining the corresponding eight structure functions for polarized vector mesons. We obtain several relations among the structure functions. Relations among some of theirmoments are also derived. Aspects of the sub-leading contributions in the 1*/N* and *N* *f* */N* expansions are discussed. At leading order we find a universal behavior of the hadronic structure functions.

The article is devoted to the philosophical interpretation of the several approaches to the creation of a quantum theory of gravity. The analysis of the key aspects of the General theory of relativity and the Standard Model, the clarification of the relevant concepts contents (gravity, particle, field, space, etc.) are conducted for this purpose. We establish the causes and origins of the creation of the quantum theory of gravity problematical character, give the interpretation of the existing problems. Therefore, the article shows a fundamental difference between realities described by the two leading modern physical theories.

Classical science is based on common sense and intuitive representability, while the microcosm cannot be directly observed and therefore is out of the representable sphere. This is probably the part of the reason for the incompatibility of the equations of quantum theory and general relativity. On the basis of the philosophical analysis of the results of some modern theoretical physics concepts, the article presents the direction of creation a quantum theory of gravity. This direction appears to be the combination of the consequences of several concepts of the string theory and the holographic principle to the properties of the quantum-mechanical entanglement. The entanglement is most likely dually connected with gravity, and the non-locality is a characteristic of the multidimensional space.

The problem lies in the fact that this result is not literally applicable to our reality and describes the possible worlds (in the context of the diversity of the laws of physics). The article establishes that, despite the mentioned, the theory remains scientific and still appears to be a good approximation to the observed physical reality.

We review and explain an infinite-dimensional counterpart of the Hurwitz theory realization (Alexeevski and Natanzon, Math. Russ. Izv. 72:3-24, 2008) of algebraic open-closed-string model à la Moore and Lazaroiu, where the closed and open sectors are represented by conjugation classes of permutations and the pairs of permutations, i.e. by the algebra of Young diagrams and bipartite graphs, respectively. An intriguing feature of this Hurwitz string model is the coexistence of two different multiplications, reflecting the deep interrelation between the theory of symmetric and linear groups, S∞ and GL(∞).

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.