### Article

## Энергетическая функция для Омега-устойчивых потоков без предельных циклов на поверхностях

The paper is devoted to the study of the class of Ω-stable flows without limit cycles on

surfaces, i.e. flows on surfaces with non-wandering set consisting of a finite number of hyperbolic

fixed points. This class is a generalization of the class of gradient-like flows, differing by forbiddance

of saddle points connected by separatrices. The results of the work are the proof of the existence

of a Morse energy function for any flow from the considered class and the construction of such a

function for an arbitrary flow of the class. Since the results are a generalization of the corresponding

results of K. Meyer for Morse-Smale flows and, in particular, for gradient-like flows, the methods for

constructing the energy function for the case of this article are a further development of the methods

used by K. Meyer, taking in sense the specifics of Ω-stable flows having a more complex structure

than gradient-like flows due to the presence of the so-called “chains” of saddle points connected by

their separatrices.

We introduce the definition of consistent equivalence of energy Morse-Bott functions for Morse-Smale flows on surfaces and state that consistent equivalence of that functions is necessary and sufficient condition for such flows.

A lot of many sorts of graphs (directed, multicolored, bipartite, etc.) were repeatedly used to describe and realize systems with regular dynamics on surfaces. For example, Morse-Smale flows are completely described by a directed graph equipped with a subgraph system. In addition, their dynamics can be described by three-color graphs. Four-color graphs describe the dynamics of some non structurally unstable vector fields, and a directed bipartite graph, equipped with additional information, is a complete topological invariant for Ω-stable flows. In this paper, for each oriented equipped bipartite graph, we construct a standard Ω-stable flow on a closed surface.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.