• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Bethe Subalgebras in Yangians and the Wonderful Compactification

Communications in Mathematical Physics. 2019. Vol. 372. No. 1. P. 343-366.

Let gg be a complex simple Lie algebra. We study the family of Bethe subalgebras in the Yangian Y(g)Y(g) parameterized by the corresponding adjoint Lie group G. We describe their classical limits as subalgebras in the algebra of polynomial functions on the formal Lie group G1[[t−1]]G1[[t−1]]. In particular we show that, for regular values of the parameter, these subalgebras are free polynomial algebras with the same Poincaré series as the Cartan subalgebra of the Yangian. Next, we extend the family of Bethe subalgebras to the De Concini–Procesi wonderful compactification G¯¯¯¯⊃GG¯⊃G and describe the subalgebras corresponding to generic points of any stratum in G¯¯¯¯G¯ as Bethe subalgebras in the Yangian of the corresponding Levi subalgebra in gg. In particular, we describe explicitly all Bethe subalgebras corresponding to the closure of the maximal torus in the wonderful compactification.