### ?

## Три сюжета о группах Кремоны

Izvestiya. Mathematics. 2019. Т. 84. № 4. С. 194-225.

The rst group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in

other groups. The third concerns the connectedness of the Cremona groups.

V. L. Popov, Izvestiya: Mathematics, England 2019 Vol. 83 No. 4 P. 830-859

The first group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups. ...

Added: September 29, 2019

Arzhantsev I., Алгебра и анализ 2022 Т. 34 № 2 С. 1-55

В работе дан обзор результатов последних лет о кратной транзитивности действий групп автоморфизмов аффинных алгебраических многообразий. Рассматривается свойство бесконечной транзитивности действия группы специальных автоморфизмов и эквивалентное ему свойство гибкости многообразия. Данные свойства имеют важные алгебраические и геометрические следствия, и при этом они выполнены для широких классов многообразий. Отдельно изучаются случаи, когда бесконечная транзитивность имеет место ...

Added: March 14, 2022

Prokhorov Y., Springer Proceedings in Mathematics & Statistics 2014 Vol. 79 P. 215-229

We give a sharp bound for orders of elementary abelian 2-groups of birational automorphisms of rationally connected threefolds. ...

Added: January 24, 2014

Vladimir L. Popov, Journal of the Ramanujan Mathematical Society 2013 Vol. 28A No. Special Issue-2013 dedicated to C.S.Seshadri's 80th birthday P. 409-415

We construct counterexamples to the rationality conjecture regarding the new version of the Makar-Limanov invariant formulated in A. Liendo, G_a-actions of fiber type on affine T-varieties, J. Algebra 324 (2010), 3653--3665. ...

Added: June 20, 2013

Popov V., Rationality and the FML invariant / Bielefeld University. Series LAGRS "Linear Algebraic Groups and Related Structures". 2012. No. 485.

We construct counterexamples to the rationality conjecture regar-ding the new version of the Makar-Limanov invariant introduced in A. Liendo, Ga-actions of fiber type on affine T-varieties, J. Algebra 324 (2010), 3653–3665. ...

Added: January 9, 2013

Popov V., Tori in the Cremona groups / Cornell University. Series math "arxiv.org". 2012. No. arXiv:1207.5205v3.

We classify up to conjugacy the subgroups of certain types in the full, in the affine, and in the special affine Cremona groups. We prove that the normalizers of these subgroups are algebraic. As an application, we obtain new results in the Linearization Problem generalizing to disconnected groups Bialynicki-Birula's results of 1966-67. We prove ``fusion ...

Added: January 9, 2013

Vladimir L. Popov, European Journal of Mathematics 2016 Vol. 2 No. 1 P. 283-290

According to the classical theorem, every algebraic variety
endowed with a nontrivial rational action of a connected linear algebraic
group is birationally isomorphic to a product of another algebraic variety
and the projective space of a positive dimension. We show that the classical proof of this theorem
actually works only in characteristic 0 and we give a characteristic free
proof ...

Added: February 2, 2016

Ю. Г. Прохоров, Известия РАН. Серия математическая 2013 Т. 77 № 3 С. 199-222

We study elements $\tau$ of order two in the birational automorphism groups of rationally connected three-dimensional algebraic varieties such that there exists a non-uniruled divisorial component of the $\tau$-fixed point locus. Using the equivariant minimal model program, we give a rough classification of such elements. ...

Added: July 1, 2013

Andrey S. Trepalin, Central European Journal of Mathematics 2014 Vol. 12 No. 2 P. 229-239

Let $\bbk$ be a field of characteristic zero and $G$ be a finite group of automorphisms of projective plane over $\bbk$. Castelnuovo's criterion implies that the quotient of projective plane by $G$ is rational if the field $\bbk$ is algebraically closed. In this paper we prove that $\mathbb{P}^2_{\bbk} / G$ is rational for an arbitrary ...

Added: December 3, 2013

Trepalin A., Central European Journal of Mathematics 2014

Let $\bbk$ be a field of characteristic zero and $G$ be a finite group of automorphisms of projective plane over $\bbk$. Castelnuovo's criterion implies that the quotient of projective plane by $G$ is rational if the field $\bbk$ is algebraically closed. In this paper we prove that $\mathbb{P}^2_{\bbk} / G$ is rational for an arbitrary ...

Added: October 14, 2013

Ivan Cheltsov, Constantin Shramov, Transactions of the American Mathematical Society 2014 Vol. 366 No. 3 P. 1289-1331

We propose a new method to study birational maps between Fano varieties based on multiplier ideal sheaves. Using this method, we prove equivariant birational rigidity of four Fano threefolds acted on by the group A6. As an application, we obtain that the Cremona group of rank 3 has at least five non-conjugate subgroups isomorphic to ...

Added: October 10, 2013

Yuri Prokhorov, On stable conjugacy of finite subgroups of the plane Cremona group, II / Cornell University. Series math "arxiv.org". 2013.

We prove that, except for a few cases, stable linearizability of finite subgroups of the plane Cremona group implies linearizability. ...

Added: October 10, 2013

Zürich : European Mathematical Society Publishing house, 2010

Fascinating and surprising developments are taking place in the classification of algebraic varieties. Work of Hacon and McKernan and many others is causing a wave of breakthroughs in the Minimal Model Program: we now know that for a smooth projective variety the canonical ring is finitely generated. These new results and methods are reshaping the ...

Added: October 11, 2013

Arzhantsev I., Liendo A., Stasyuk T., Journal of Pure and Applied Algebra 2021 Vol. 225 No. 2 P. 106499

Let X be a normal variety endowed with an algebraic torus action. An additive group action alpha on X is called vertical if a general orbit of alpha is contained in the closure of an orbit of the torus action and the image of the torus normalizes the image of alpha in Aut(X). Our first result in this paper ...

Added: July 29, 2020

Avilov A., Birational rigidity of G-del Pezzo threefolds of degree 2 / Cornell University. Series math "arxiv.org". 2022.

In this paper we classify nodal rational non-Q-factorial del Pezzo threefolds of degree 2 which can be G-birationally rigid for some subgroup G ⊂ Aut(X). ...

Added: December 8, 2022

Cheltsov I., Известия РАН. Серия математическая 2014 Т. 78 № 2 С. 167-224

We prove two new local inequalities for divisors on smooth surfaces and consider several applications of these inequalities. ...

Added: December 6, 2013

В. Л. Попов, Математические заметки 2019 Т. 105 № 4 С. 589-591

It is shown that the main result of N. R. Wallach, Principal orbit type theorems for reductive algebraic group actions and the Kempf–Ness Theorem, arXiv:1811.07195v1 (17 Nov 2018), is a special case of a more general statement, which can be deduced, using a short argument, from the classical Richardson and Luna theorems. ...

Added: September 29, 2019

Cheltsov I., Shramov K., Transformation Groups 2012 Vol. 17 No. 2 P. 303-350

We study the action of the Klein simple group PSL2(F7 ) consisting of 168 elements on two rational threefolds: the three-dimensional projective space and a smooth Fano threefold X of anticanonical degree 22 and index 1. We show that the Cremona group of rank three has at least three non-conjugate subgroups isomorphic to PSL2(F7 ). As a ...

Added: August 30, 2012

Prokhorov Y., Transactions of the American Mathematical Society 2014 Vol. 366 No. 3 P. 1289-1331

We propose a new method to study birational maps between Fano varieties based on multiplier ideal sheaves. Using this method, we prove equivariant birational rigidity of four Fano threefolds acted on by the group A6. As an application, we obtain that the Cremona group of rank 3 has at least five non-conjugate subgroups isomorphic to ...

Added: April 9, 2014

Popov V., Izvestiya. Mathematics 2013 Vol. 77 No. 4 P. 742-771

We classify up to conjugacy the subgroups of certain types in the full, affine, and special affine Cremona groups.
We prove that the normalizers of these subgroups are algebraic. As an application, we obtain new results in the linearization problem by generalizing Bia{\l}ynicki-Birula's results of 1966--67 to disconnected groups.
We prove fusion theorems for n-dimensional tori in ...

Added: August 23, 2013

Prokhorov Y., Shramov K., American Journal of Mathematics 2016 Vol. 138 No. 2 P. 403-418

Assuming the Borisov-Alexeev-Borisov conjecture, we prove that there is a constant $J=J(n)$ such that for any rationally connected variety $X$ of dimension $n$ and any finite subgroup $G\subset{\rm Bir}(X)$ there exists a normal abelian subgroup $A\subset G$ of index at most $J$. In particular, we obtain that the Cremona group ${\rm Cr}_3={\rm Bir}({\Bbb P}^3)$ enjoys ...

Added: August 31, 2016

В. Л. Попов, Математические заметки 2017 Т. 102 № 1 С. 72-80

Мы доказываем, что аффинно-треугольные подгруппы являются борелевскими подгруппами групп Кремоны. ...

Added: May 3, 2017

Vladimir L. Popov, Transformation Groups 2014 Vol. 19 No. 2 P. 549-568

We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given. ...

Added: March 17, 2014

Vladimir L. Popov, Jordan groups and automorphism groups of algebraic varieties / Cornell University. Series math "arxiv.org". 2013. No. 1307.5522.

This is an expanded version of my talk at the workshop ``Groups of Automorphisms in Birational and Affine Geometry'', October 29–November 3, 2012, Levico Terme, Italy. The first section is focused on Jordan groups in abstract setting, the second on that in the settings of automorphisms groups and groups of birational self-maps of algebraic varieties. ...

Added: July 21, 2013