Article
Anisotropic ultrafast optical response of terahertz pumped graphene
We have measured the ultrafast anisotropic optical response of highly doped graphene to an intense single cycle terahertz pulse. The time profile of the terahertz-induced anisotropy signal at 800 nm has minima and maxima repeating those of the pump terahertz electric field modulus. It grows with increasing carrier density and demonstrates a specific nonlinear dependence on the electric field strength. To describe the signal, we have developed a theoretical model that is based on the energy and momentum balance equations and takes into account optical phonons of graphene and the substrate. According to the theory, the anisotropic response is caused by the displacement of the electronic momentum distribution from zero momentum induced by the pump electric field in combination with polarization dependence of the matrix elements of interband optical transitions.
The optical properties of graphene-based structures are discissed. The universal optical absorption in graphene is reviewed. The photonic band structure and transmission of graphene-based photonic crystals are considered. The spectra of plasmon and magnetoplasmon excitations in graphene layers and grapehene nanoribbons (GNR) are analyzed. The localization of the electromagnetic waves in the photonic crystals with defects, which play a role of waveguide, is studied. Properties of plasmons and magnetoplasmons in graphene layers and GNR are reviewed. The surface plasmon amplification by stimulated emission of radiation with the net amplification of surface plasmons in the doped GNR is described. The minimal population inversion per unit area needed for the net amplification of plasmons in a doped GNR is reported. The various applications of graphene for photonics and optoelectronics are reviewed. The tunability of photonic and plasmonic properties of various graphene structures by doping achieved by applying the gate voltage is discussed.
Graphene synthesis technology on substrates is promising, as is compatible with existing CMOS-technology. Knowledge about how to affect the substrate of choice for structural and electronic properties of graphene is important and opens up new opportunities in targeted influence on the properties of this unique material. Specialized measuring system was established to measure the galvanomagnetic characteristics of substrates multigraphene. Its structure and the measurement results are presented in the paper. For surface resistivity measurements we obtained samples were higher than that of natural graphite, but much lower than for samples of colloidal suspensions.
The behavior of the TE and TM electromagnetic waves in graphene at the interface between two semi-infinite dielectric media is studied. The dramatic influence on the TE waves propagation even at very small changes in the optical contrast between the two dielectric media is predicted. Frequencies of the TE waves are found to lie only in the window determined by the contrast. We consider this effect in connection with the design of graphene-based optical gas sensor. Near the frequency, where the imaginary part of the conductivity of graphene becomes zero, ultrahigh refractive index sensitivity and very low detection limit are revealed. The considered graphene-based optical gas sensor outperforms characteristics of modern volume refractive index sensors by several orders of magnitude.
We suggest a pump-probe method for studying semiconductor spin dynamics based on pumping of carrier spins by a pulse of oscillating radiofrequency (rf) magnetic field and probing by measuring the Faraday rotation of a short laser pulse. We demonstrate this technique on n -GaAs and observe the onset and decay of coherent spin precession during and after the course of rf pulse excitation. We show that the rf field resonantly addresses the electron spins with Larmor frequencies close to that of the rf field. This opens the opportunity to determine the homogeneous spin coherence time T2 , that is inaccessible directly in standard all-optical pump-probe experiments.
A novel type of spaser with the net amplification of surface plasmons (SPs) in a doped graphene nanoribbon is proposed. The plasmons in the THz region can be generated in a doped graphene nanoribbon due to nonradiative excitation by emitters like two level quantum dots located along a graphene nanoribbon. The minimal population inversion per unit area, needed for the net amplification of SPs in a doped graphene nanoribbon, is obtained. The dependence of the minimal population inversion on the surface plasmon wave vector, graphene nanoribbon width, doping, and damping parameters necessary for the amplification of surface plasmons in the armchair graphene nanoribbon is studied.
The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.
Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.