Article
Search for lepton-flavour-violating decays of Higgs-like bosons
A search is presented for a Higgs-like boson with mass in the range 45 to 195 GeV/𝑐2GeV/c2 decaying into a muon and a tau lepton. The dataset consists of proton-proton interactions at a centre-of-mass energy of 8 TeV TeV , collected by the LHCb experiment, corresponding to an integrated luminosity of 2 fb −1 fb −1 . The tau leptons are reconstructed in both leptonic and hadronic decay channels. An upper limit on the production cross-section multiplied by the branching fraction at 95% confidence level is set and ranges from 22 pbpb for a boson mass of 45 GeV/𝑐2GeV/c2 to 4 pbpb for a mass of 195 GeV/𝑐2GeV/c2 .
The production of ϒ(nS) mesons (n = 1, 2, 3) in pPb and Pbp collisions at a centre-of-mass energy per nucleon pair 𝑠NN‾‾‾‾√=8.16sNN=8.16 TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb−1−1. The ϒ(nS) mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the ϒ(1S) and ϒ(2S) states, their forward-to-backward ratios and nuclear modification factors. The measurements are performed as a function of the transverse momentum p𝑇T and rapidity in the nucleon-nucleon centre-of-mass frame y∗∗ of the ϒ(nS) states, in the kinematic range p𝑇T < 25 GeV/c and 1.5 < y∗∗ < 4.0 (−5.0 < y∗∗ < −2.5) for pPb (Pbp) collisions. In addition, production cross-sections for ϒ(3S) are measured integrated over phase space and the production ratios between all three ϒ(nS) states are determined. Suppression for bottomonium in proton-lead collisions is observed, which is particularly visible in the ratios. The results are compared to theoretical models.
The 𝐵0𝑠⎯⎯⎯⎯⎯⎯⎯→𝜒𝑐2𝐾+𝐾−Bs0¯→χc2K+K− decay mode is observed and its branching fraction relative to the corresponding 𝜒𝑐1χc1decay mode, in a ±15MeV/𝑐2±15MeV/c2 window around the 𝜙ϕ mass, is found to be (𝐵0𝑠⎯⎯⎯⎯⎯⎯⎯→𝜒𝑐2𝐾+𝐾−)(𝐵0𝑠⎯⎯⎯⎯⎯⎯⎯→𝜒𝑐1𝐾+𝐾−)=(17.1±3.1±0.4±0.9)%,B(Bs0¯→χc2K+K−)B(Bs0¯→χc1K+K−)=(17.1±3.1±0.4±0.9)%, where the first uncertainty is statistical, the second systematic and the third due to the knowledge of the branching fractions of radiative 𝜒𝑐χc decays. The decay mode 𝐵0𝑠⎯⎯⎯⎯⎯⎯⎯→𝜒𝑐1𝐾+𝐾−Bs0¯→χc1K+K− allows the 𝐵0𝑠Bs0 mass to be measured as 𝑚(𝐵0𝑠)=5366.83±0.25±0.27MeV/𝑐2,m(Bs0)=5366.83±0.25±0.27MeV/c2,where the first uncertainty is statistical and the second systematic. A combination of this result with other LHCb determinations of the 𝐵0𝑠Bs0 mass is made.
Measurements of the W±→ℓ±ν and Z→ℓ+ℓ− production cross sections (where ℓ±=e±,μ± ) in proton–proton collisions at s=13 TeV are presented using data recorded by the ATLAS experiment at the Large Hadron Collider, corresponding to a total integrated luminosity of 81 pb −1 . The total inclusive W± -boson production cross sections times the single-lepton-flavour branching ratios are σW+tot=11.83±0.02 (stat)±0.32 (sys)±0.25 (lumi) nb and σW−tot=8.79±0.02 (stat)±0.24 (sys)±0.18 (lumi) nb for W+ and W− , respectively. The total inclusive Z -boson production cross section times leptonic branching ratio, within the invariant mass window 66<mℓℓ<116 GeV , is σZtot=1.981±0.007 (stat)±0.038 (sys)±0.042 (lumi) nb . The W+ , W− , and Z -boson production cross sections and cross-section ratios within a fiducial region defined by the detector acceptance are also measured. The cross-section ratios benefit from significant cancellation of experimental uncertainties, resulting in σW+fid/σW−fid=1.295±0.003 (stat)±0.010 (sys) and σW±fid/σZfid=10.31±0.04 (stat)±0.20 (sys) . Theoretical predictions, based on calculations accurate to next-to-next-to-leading order for quantum chromodynamics and to next-to-leading order for electroweak processes and which employ different parton distribution function sets, are compared to these
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability
The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.