Article
Probabilistic adaptive computation time
We present a probabilistic model with discrete latent variables that control the computation time in deep learning models such as ResNets and LSTMs. A prior on the latent variables expresses the preference for faster computation. The amount of computation for an input is determined via amortized maximum a posteriori (MAP) inference. MAP inference is performed using a novel stochastic variational optimization method. The recently proposed adaptive computation time mechanism can be seen as an ad-hoc relaxation of this model. We demonstrate training using the general-purpose concrete relaxation of discrete variables. Evaluation on ResNet shows that our method matches the speed-accuracy trade-off of adaptive computation time, while allowing for evaluation with a simple deterministic procedure that has a lower memory footprint.
The performance of machine learning methods is heavily dependent on the choice of data representation (or features) on which they are applied. The rapidly developing field of deep learning is concerned with questions surrounding how we can best learn meaningful and useful representations of data. We take a broad view of the field and include topics such as feature learning, metric learning, compositional modeling, structured prediction, reinforcement learning, and issues regarding large-scale learning and non-convex optimization. The range of domains to which these techniques apply is also very broad, from vision to speech recognition, text understanding, gaming, music, etc.
Autonomous taxies are in high demand for smart city scenario. Such taxies have a well specified path to travel. Therefore, these vehicles only required two important parameters. One is detection parameter and other is control parameter. Further, detection parameters require turn detection and obstacle detection. The control parameters contain steering control and speed control. In this paper a novel autonomous taxi model has been proposed for smart city scenario. Deep learning has been used to model the human driver capabilities for the autonomous taxi. A hierarchical Deep Neural Network (DNN) architecture has been utilized to train various driving aspects. In first level, the proposed DNN architecture classifies the straight and turning of road. A parallel DNN is used to detect obstacle at level one. In second level, the DNN discriminates the turning i.e. left or right for steering and speed controls. Two multi layered DNNs have been used on Nvidia Tesla K 40 GPU based system with Core i-7 processor. The mean squared error (MSE) for the detection parameters viz. speed and steering angle were 0.018 and 0.0248 percent, respectively, with 15 milli seconds of realtime response delay.
It has been shown that the activations invoked by an image within the top layers of a large convolutional neural network provide a high-level descriptor of the visual content of the image. In this paper, we investigate the use of such descriptors (neural codes) within the image retrieval application. In the experiments with several standard retrieval benchmarks, we establish that neural codes perform competitively even when the convolutional neural network has been trained for an unrelated classification task (e.g. Image-Net). We also evaluate the improvement in the retrieval performance of neural codes, when the network is retrained on a dataset of images that are similar to images encountered at test time. We further evaluate the performance of the compressed neural codes and show that a simple PCA compression provides very good short codes that give state-of-the-art accuracy on a number of datasets. In general, neural codes turn out to be much more resilient to such compression in comparison other state-of-the-art descriptors. Finally, we show that discriminative dimensionality reduction trained on a dataset of pairs of matched photographs improves the performance of PCA-compressed neural codes even further. Overall, our quantitative experiments demonstrate the promise of neural codes as visual descriptors for image retrieval.
Market graph is built on the basis of some similarity measure for financial asset returns. The paper considers two similarity measures: classic Pearson correlation and sign correlation. We study the associated market graphs and compare the conditional risk of the market graph construction for these two measures of similarity. Our main finding is that the conditional risk for the sign correlation is much better than for the Pearson correlation for larger values of threshold for several probabilistic models. In addition, we show that for some model the conditional risk for sign correlation dominates over the conditional risk for Pearson correlation for all values of threshold. These properties make sign correlation a more appropriate measure for the maximum clique analysis.
The performance of machine learning methods is heavily dependent on the choice of data representation (or features) on which they are applied. The rapidly developing field of representation learning is concerned with questions surrounding how we can best learn meaningful and useful representations of data. We take a broad view of the field and include topics such as deep learning and feature learning, metric learning, compositional modeling, structured prediction, reinforcement learning, and issues regarding large-scale learning and non-convex optimization. The range of domains to which these techniques apply is also very broad, from vision to speech recognition, text understanding, gaming, music, etc.
Brain-computer interfaces find application in a number of different areas and have the potential to be used for research as well as for practical purposes. The clinical use of BCI includes current studies on neurorehabilitation ([Frolov et al., 2013; Ang et al., 2010]), and there is the prospect of using BCI to restore movement and communication capabilities, providing alternative effective pathways to those that may be lost due to injury or illness. The processing of electrophysiological data requires analysis of high-dimensional, nonstationary, noisy signals reflecting complex underlying processes and structures. We have shown that for non-invasive neuroimaging methods such as EEG the potential improvement lies in the field of machine learning and involves designing data analysis algorithms that can model physiological and psychoemotional variability of the user. The development of such algorithms can be conducted in different ways, including the classical Bayesian paradigm as well as modern deep learning architectures. The interpretation of nonlinear decision rules implemented by multilayer structures would enable automatic and objective knowledge extraction from the neurocognitive experiments data. Despite the advantages of non-invasive neuroimaging methods, a radical increase in the bandwidth of the BCI communication channel and the use of this technology for the prosthesis control is possible only through invasive technologies. Electrocorticogram (ECoG) is the least invasive of such technologies, and in the final part of this work we demonstrate the possibility of using ECoG to decode the kinematic characteristics of the finger movement.
We consider the calculation of Nitzan-Kelly’s manipulability index in the impartial anonymous and neutral culture (IANC) model. We provide a new theoretical study of this model and an estimation for the maximal difference between manipulability indices in the IANC model and a basic model, the impartial culture (IC). The asymptotic behavior of this difference is studied with the help of the impartial anonymous culture (IAC) model. It is shown that the difference between the IAC and IANC models tends to zero as the number of alternatives or the number of voters grows. These results hold for any other probabilistic measure that is anonymous and neutral. Finally, we calculate Nitzan-Kelly’s index in the IANC model for four social choice rules and compare it with the IC model.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability
The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.
Existing approaches suggest that IT strategy should be a reflection of business strategy. However, actually organisations do not often follow business strategy even if it is formally declared. In these conditions, IT strategy can be viewed not as a plan, but as an organisational shared view on the role of information systems. This approach generally reflects only a top-down perspective of IT strategy. So, it can be supplemented by a strategic behaviour pattern (i.e., more or less standard response to a changes that is formed as result of previous experience) to implement bottom-up approach. Two components that can help to establish effective reaction regarding new initiatives in IT are proposed here: model of IT-related decision making, and efficiency measurement metric to estimate maturity of business processes and appropriate IT. Usage of proposed tools is demonstrated in practical cases.