Article
Flexible and Reliable UAV-Assisted Backhaul Operation in 5G mmWave Cellular Networks
To satisfy the stringent capacity and scalability requirements in the fifth generation (5G) mobile networks, both wireless access and backhaul links are envisioned to exploit millimeter wave (mmWave) spectrum. Here, similar to the design of access links, mmWave backhaul connections must also address many challenges such as multipath propagation and dynamic link blockage, which calls for advanced solutions to improve their reliability. To address these challenges, 3GPP New Radio technology is considering a flexible and reconfigurable backhaul architecture, which includes dynamic link rerouting to alternative paths. In this paper, we investigate the use of aerial relay nodes carried by e.g., unmanned aerial vehicles (UAVs) to allow for such dynamic routing, while mitigating the impact of occlusions on the terrestrial links. This novel concept requires an understanding of mmWave backhaul dynamics that accounts for: 1) realistic 3-D multipath mmWave propagation; 2) dynamic blockage of mmWave backhaul links; and 3) heterogeneous mobility of blockers and UAV-based assisting relays. We contribute the required mathematical framework that captures these phenomena to analyze the mmWave backhaul operation in characteristic urban environments. We also utilize this framework for a new assessment of mmWave backhaul performance by studying its spatial and temporal characteristics. We finally quantify the benefits of utilizing UAV assistance for more reliable mmWave backhaul. The numerical results are confirmed with 3GPP-calibrated simulations, while the framework itself can aid in the design of robust UAV-assisted backhaul infrastructures in future 5G mmWave cellular.
The fifth generation wireless systems are expected to rely on a large number of small cells to massively offload traffic from the cellular and even from the wireless local area networks. To enable this functionality, mm-wave (EHF) and Terahertz (THF) bands are being actively explored. These bands are characterized by unique propagation properties compared with microwave systems. As a result, the interference structure in these systems could be principally different to what we observed so far at lower frequencies. In this paper, using the tools of stochastic geometry, we study the systems operating in the EHF/THF bands by explicitly capturing three phenomena inherent for these frequencies: 1) high directivity of the transmit and receive antennas; 2) molecular absorption; and 3) blocking of high-frequency radiation. We also define and compare two different antenna radiation pattern models. The metrics of interest are the mean interference and the signal-to-interference-plus-noise (SINR) ratio at the receiver. Our results reveal that: 1) for the same total emitted energy by a Poisson field of interferers, both the interference and SINR significantly increase when simultaneously both transmit and receive antennas are directive and 2) blocking has a profound impact on the interference and SINR creating much more favorable conditions for communications compared with no blocking case.
The main goal of this work is to present the developed research tool to find, investigate and analyze hidden dependences between parameters of the hardware/software platforms (such as influence of NUMA architecture, memory page size, etc) and the performance of block data processing algorithms. The new toolset (STAND) allows performance estimation and comparison of block data processing algorithms (for example, encryption/compression algorithms) running in kernel space. The primary application area of the developed technology and toolset is performance estimation and comparison of 'black box' libraries on particular hardware/software platform rather than research of mathematical or software implementation of algorithms. The main advantage of the presented toolset is that no source codes of algorithm implementation are needed (providing that an abstraction layer with known API is available). Linux operating system and computing nodes with ccNUMA architecture was selected as basic software/hardware platform. In this paper, the architecture of STAND is described. The methods for generating system load and comparison results for encryption algorithms AES (CBC), AES (CTR), and compression algorithms LZO, quicklz and bCodec are also presented.
The emergence and use of advanced technologies in today’s commerce has gradually grown into habitual practice, and the introduction of more modern weapons including UAVs to military operations is hardly a new challenge in the history of armed conflicts. The interim research results concerning attitudes to drone usage have highlighted a number of contradictions in national and international law and policies and revealed a certain inconsistency in the respondents’ attitudes partially caused by the different width of Overton windows devoted to drone expansion in the two countries, as well as by the use of the socio-cognitive tools currently changing the national attitudes and value systems as part of the national mentalities. The research has highlighted a number of contradictions that proved to be more profession-specific, age and gender-specific.
This study proposes the global bibliometric overview of unmanned aerial vehicles (UAVs) research in Scopus database in 1985 – 2015. This study detects key countries in this field of research as well as the major centers of excellence (organisations) in UAV research. We analyse publication activity of leading countries and organisations as well as the level of citation of their UAV publications. Special section is devoted to the analysis of cross-country collaboration links. For plotting the map of international collaboration in UAV research, VOSviewer software was used.
Inefficiency of wireless sensor networks (WSN) in terms of the network lifetime is one of the major reasons preventing their widespread use. To alleviate this problem different data collection approaches have been proposed. One of the promising techniques is to use unmanned aerial vehicle (UAV). In spite of several papers advocating this approach, there have been no system designs and associated performance evaluation proposed to date. In this paper, we address this issue by proposing a new WSN design, where UAV serves as a sink while Bluetooth low energy (BLE) is used as a communication technology. We analyze the proposed design in terms of the network lifetime and area coverage comparing it with routed WSNs. Our results reveal that the lifetime of the proposed design is approximately two orders of magnitude longer than that of the routed WSNs. Using the tools of integral geometry we show that the density of nodes to cover a certain area is approximately two times more for routed WSNs compared to our design.
Proceedings of 2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Generalized error-locating codes are discussed. An algorithm for calculation of the upper bound of the probability of erroneous decoding for known code parameters and the input error probability is given. Based on this algorithm, an algorithm for selection of the code parameters for a specified design and input and output error probabilities is constructed. The lower bound of the probability of erroneous decoding is given. Examples of the dependence of the probability of erroneous decoding on the input error probability are given and the behavior of the obtained curves is explained.
Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability
I give the explicit formula for the (set-theoretical) system of Resultants of m+1 homogeneous polynomials in n+1 variables