### Article

## Flat affine subvarieties in Oeljeklaus–Toma manifolds

The Oeljeklaus–Toma (OT-)manifolds are compact, complex, non-Kähler manifolds constructed by Oeljeklaus and Toma, and generalizing the Inoue surfaces. Their construction uses the number-theoretic data: a number field *K* and a torsion-free subgroup *U* in the group of units of the ring of integers of *K*, with rank of *U* equal to the number of real embeddings of *K*. OT-manifolds are equipped with a torsion-free flat affine connection preserving the complex structure (this structure is known as “flat affine structure”). We prove that any complex subvariety of smallest possible positive dimension in an OT-manifold is also flat affine. This is used to show that if all elements in U∖{1} are primitive in *K*, then *X* contains no proper analytic subvarieties.

This paper investigates whether a root lattice can be similar to a lattice O of integer elements of a number field K endowed with the inner product (x,y):=Trace_{K/\mathbb Q}(x\cdot \theta(y)), where \theta is an involution of the field K. For each of the following three properties (1), (2), (3), a classification of all the pairs K, \theta with this property is obtained: (1) O is a root lattice; (2) O is similar to an even root lattice; (3) O is similar to the lattice \mathbb Z^{[K:\mathbb Q]}. The necessary conditions for similarity of O to a root lattice of other types are also obtained. It is proved that O cannot be similar to a positive definite even unimodular lattice of rank \leqslant 48, in particular, to the Leech lattice.

We establish a Primitive Element Theorem for fields equipped with several commuting operators such that each of the operators is either a derivation or an automorphism.

We construct a fundamental region for the action on the 2d+1-dimensional affine space of some free, discrete, properly discontinuous groups of affine transformations preserving a quadratic form of signature (d+1,d), where d is any odd positive integer.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.