### ?

## On the relation between Stokes drift and the Gerstner wave

Physics-Uspekhi. 2018. Vol. 61. P. 307-312.

Abrashkin A. A., Pelinovsky E.

We discuss the properties of two-dimensional, non-

linear, potential, and vortex waves on the surface of an ideal

liquid of infinite depth. It is shown that in the quadratic order in

the amplitude, the vorticity of the Gerstner wave is equal in

magnitude to and different in sign from that of the Stokes drift

current in a surface layer. This allows a classic Stokes wave

obtained in the framework of potential theory to be interpreted

as a superposition of the Gerstner wave and Stokes drift. It is

proposed that the nonlinearity coefficient in the nonlinear

SchroÈ dinger equation can be physically interpreted as the Dop-

pler frequency shift along the vertically averaged Stokes drift

current.

Priority areas:
mathematics

Language:
English

Abrashkin A. A., Pelinovsky E., Успехи физических наук 2018 Т. 188 С. 329-334

It is shown in the quadratic approximation that the Gerstner wave vorticity is equal and of different sign to the vorticity of Stokes drift current in deep water. That gives an opportunity to interpret the Stokes wave as a superposition of the Gerstner wave and the Stokes drift and to explain, why the nonlinearity in ...

Added: October 17, 2017

Abrashkin A. A., Pelinovsky E., Izvestia, Atmospheric and Oceanic Physic 2018 Vol. 54 No. 1 P. 101-105

A nonlinear Schrцdinger equation (NSE) describing packets of weakly nonlinear waves in an inhomogeneously
vortical infinitely deep fluid has been derived. The vorticity is assumed to be an arbitrary function
of Lagrangian coordinates and quadratic in the small parameter proportional to the wave steepness. It is
shown that the modulational instability criteria for the weakly vortical waves and ...

Added: October 3, 2018

Abrashkin A. A., Discrete and Continuous Dynamical Systems 2019 Vol. 39 No. 8 P. 4443-4453

A class of non-stationary surface gravity waves propagating in the
zonal direction in the equatorial region is described in the f -plane approx
imation. These waves are described by exact solutions of the equations of
hydrodynamics in Lagrangian formulation and are generalizations of Gerstner
waves. The wave shape and non-uniform pressure distribution on a free sur
face depend on two ...

Added: June 19, 2019

Abrashkin A. A., Deep-Sea Research Part II: Topical Studies in Oceanography 2019 Vol. 160 P. 3-6

Three Lagrangian invariants are shown to exist for flows in the equatorial region in the β - plane approximation.
They extend the Cauchy invariants to a non-rotating fluid. The relationship between these generalized invariants
and the results following from Kelvin's and Ertel's theorems is ascertained. Explicit expressions of the invariants
for equatorially trapped waves and equatorial Gerstner waves ...

Added: April 2, 2019

Abrashkin A. A., Pelinovsky E., Известия РАН. Физика атмосферы и океана 2018 № 1

The nonlinear Schrödinger (NLS) equation describing the propagation of inhomogeneous vertical wave packets in an infinitely deep fluid has been derived. The vorticity is assumed to be an arbitrary function of Lagrangian coordinates and quadratic in the small parameter proportional to the wave steepness. It is shown that the modulation instability criteria of the considered ...

Added: October 16, 2017

Abrashkin A. A., Chaos, Solitons and Fractals 2019 Vol. 118 P. 152-158

We present an analytical description of the class of unsteady vortex surface waves generated by non- uniformly distributed, time-harmonic pressure. The fluid motion is described by an exact solution of the equations of hydrodynamics generalizing the Gerstner solution. The trajectories of the fluid particles are circumferences. The particles on a free surface rotate around circumferences ...

Added: December 17, 2018

A. A. Abrashkin, Monatshefte fur Mathematik 2022 Vol. 199 No. 4 P. 717-732

Propagation of periodic stationaryweakly vortical gravitationalwaves on the freewater surface is considered. Similar wave motion was studied by Gouyon (Ann de la Fac des Sci de l’Université de Toulouse Sér 4(22):1–55, 1958) in linear and quadratic approximations in small parameter of the wave’s steepness ε for the deep water conditions.
In this paper this result is considered for the ...

Added: October 13, 2022

Abrashkin A. A., Oshmarina O. E., Communications in Nonlinear Science and Numerical Simulation 2016 Vol. 34 P. 66-76

The process of rogue wave formation on deep water is considered. A wave of extreme amplitude is born against the background of uniform waves (Gerstner waves) under the action of external pressure on free surface. The pressure distribution has a form of a quasi-stationary “pit”. The fluid motion is supposed to be a vortex one ...

Added: November 3, 2015

Abrashkin A. A., Pelinovsky E., Journal of Physics A: Mathematical and Theoretical 2021 Vol. 54 No. 39 Article 395701

To study stationary periodic weakly vortical waves on water (the Gouyon waves), the method of the modified Lagrangian variables is suggested. The wave vorticity Ω is specified as a series in the small steepness parameter ε in
the form: Ω =\sum( ε^n · Ω_n (b)), where Ω_n are arbitrary functions of the vertical Lagrangian coordinate b. Earlier Gouyon (1958) studied ...

Added: October 5, 2021

Abrashkin A. A., Journal of Physics A: Mathematical and Theoretical 2022 Vol. 55 No. 41 Article 415701

An analytical description of unsteady edge waves over a uniform slope is proposed. It is assumed that the waves are excited by time-harmonic external pressure with inhomogeneous spatial distribution. The problem is considered in Lagrangian variables. An exact solution of the hydrodynamic equations is obtained. It generalizes the stationary Gerstner–Constantin solution. The proposed model describes the dynamics of coastal splashes ...

Added: October 13, 2022

Abrashkin A. A., Pelinovsky E., Nonlinear Processes in Geophysics 2017 Vol. 24 P. 255-264

The nonlinear Schrödinger (NLS) equation describing the propagation of weakly rotational wave packets in an infinitely deep fluid in Lagrangian coordinates has been derived. The vorticity is assumed to be an arbitrary function of Lagrangian coordinates and quadratic in the small parameter proportional to the wave steepness. The vorticity effects manifest themselves in a shift ...

Added: June 26, 2017

Gromov E.M., Malomed B. A., Physica Scripta 2015 Vol. 90 No. 6 P. 068021-1-068021-6

Dynamics of Langmuir solitons is considered in plasmas with spatially inhomogeneous electron temperature. An underlying Zakharov-type system of two unidirectional equations for the Langmuir and ion-sound fields is reduced to an inhomogeneous nonlinear Schrödinger equation (NLSE) with spatial variation of the second-order dispersion (SOD) and self-phase modulation (SPM) coefficients, induced by the spatially inhomogeneous profile ...

Added: April 25, 2015

Abrashkin A. A., Pelinovsky E., Physics-Uspekhi 2022 Vol. 65 P. 453-467

To mark 220 years since the appearance of Gerstner's paper that proposed an exact solution to the hydrodynamic
equations, an overview of exact solutions for water waves is given, each of which is a generalization of the Gerstner wave. Additional factors are coastal geometry, fluid rotation, varying pressure on the free surface, stratification, fluid compressibility, and background flows. Waves on ...

Added: October 13, 2022

Gromov Evgeny, Malomed B., Chaos 2016 Vol. 26 No. 12 P. 123118-1-123118-10

One-parameter families of exact two-component solitary-wave solutions for interacting high-frequency (HF) and low-frequency (LF) waves are found in the framework of Zakharov-type models, which couple the nonlinear Schrödinger equation (NLSE) for intense HF waves to the Boussinesq (Bq) or Korteweg - de Vries (KdV) equation for the LF component through quadratic terms. The systems apply, ...

Added: November 26, 2016

Slunyaev A., Studies in Applied Mathematics 2019 Vol. 142 P. 385-413

Conditions of optimal (synchronized) collisions of any number of solitons and breathers are studied within the framework of the Gardner equation (GE) with positive cubic nonlinearity, which in the limits of small and large
amplitudes tends to other long-wave models, the classic and the modified Korteweg–de Vries equations. The local
solution for an isolated soliton or breather within the GE is obtained. ...

Added: March 11, 2019

Akhmedov E., Physical Review D - Particles, Fields, Gravitation and Cosmology 2013 Vol. 87 No. 4 P. 044049

Following Krotov and Polyakov [ Nucl. Phys. B849 410 (2011)], we show that in global de Sitter space its isometry is broken by the loop IR divergences for any invariant vacuum state of the massive scalars. We derive a kinetic equation in global de Sitter space that follows from the Dyson-Schwinger equation of the Schwinger-Keldysh ...

Added: February 27, 2013

BOSSY M., Jabir J. M., Electronic Communications in Probability 2018 Vol. 23 P. 1-14

In this paper, we prove a particle approximation, in the sense of the propagation of chaos, of a Lagrangian stochastic model submitted to specular boundary condition and satisfying the mean no-permeability condition. ...

Added: June 7, 2018

Пенза : ПГУ, 2015

В сборник трудов включены доклады юбилейного ХХ-го Международного симпозиума «Надежность и качество», проходившего с 25 по 31 мая 2015 г. в городе Пензе.
Рассмотрены актуальные проблемы теории и практики повышения надежности и качества; эффективности внедрения инновационных и информационных технологий в фундаментальных научных и прикладных исследованиях, образовательных и коммуникативных системах и средах, экономике и юриспруденции; методов и ...

Added: May 31, 2015

Belavin V., Geiko R., Journal of High Energy Physics 2017 Vol. 125 P. 1-13

We continue to investigate the dual description of the Virasoro conformal blocks arising in the framework of the classical limit of the AdS3/CFT2 correspondence. To give such an interpretation in previous studies, certain restrictions were necessary. Our goal here is to consider a more general situation available through the worldline approximation to the dual AdS gravity. ...

Added: August 31, 2017

Буров А.А., Герман А. Д., Косенко И. И., Космические исследования 2014 Т. 52 № 4 С. 307-312

The problem of planar oscillations of a pendulum with variable length suspended on the Moon’s surface is considered. It is assumed that the Earth and Moon (or, in the general case, a planet and its satellite, or an asteroid and a spacecraft) revolve around the common center of mass in unperturbed elliptical Keplerian orbits. We ...

Added: November 8, 2014

Sergeev A., Васильев А. Ю., Russian Mathematical Surveys 2013 Vol. 68 No. 3 P. 435-502

Teichmüller theory is a ramified and rapidly developing area of mathematics which has multiple connections with other directions in the mathematical sciences and with their applications, first and foremost in mathematical physics. In this survey the main lines of development of this theory and its applications to string theory are presented in a historical context.
Bibliography: 128 titles. ...

Added: April 9, 2015

Aseeva N., Gromov E., Onosova I. V. et al., JETP Letters 2016 Vol. 103 No. 10 P. 653-657

Evolution of solitons is addressed in the framework of a third-order nonlinear Schrödinger equation (NLSE), including nonlinear dispersion, third-order dispersion and a pseudo-stimulated-Raman-scattering (pseudo-SRS) term, i.e., a spatial-domain counterpart of the SRS term, which is well known as a part of the temporal domain NLSE in optics. In this context, it is induced by the ...

Added: June 28, 2016

Min Namkung, Younghun K., Scientific Reports 2018 Vol. 8 No. 1 P. 16915-1-16915-18

Sequential state discrimination is a strategy for quantum state discrimination of a sender’s quantum
states when N receivers are separately located. In this report, we propose optical designs that can
perform sequential state discrimination of two coherent states. For this purpose, we consider not
only binary phase-shifting-key (BPSK) signals but also general coherent states, with arbitrary prior
probabilities. Since ...

Added: November 16, 2020

Kurkina O. E., Kurkin A. A., Rouvinskaya E. et al., Письма в Журнал экспериментальной и теоретической физики 2012 Т. 95 № 2 С. 98-103

Nonlinear wave dynamics is discussed using the extended modified Korteweg–de Vries equation that includes the combination of the third- and fifth- order terms and is valid for waves in a three-layer fluid with so-called symmetric stratification. The derived equation has solutions in the form of solitary waves of various polarities. At small amplitudes, they are ...

Added: August 24, 2012