### Article

## A Topological Study of Textile Structures. Part I: An Introduction to Topological Methods

This paper proposes a new systematic approach for the description and classification of textile structures based on topological principles. It is shown that textile structures can be considered as a specific case of knots or links and can be represented by diagrams on a torus. This enables modern methods of knot theory to be applied to the study of the topology of textiles. The basics of knot theory are briefly introduced. Some specific matters relating to the application of these methods to textiles are discussed, including enumeration of textile structures and topological invariants of doubly-periodic structures.

We propose an algebraic model of the conjectural triply graded homology of S. Gukov, N. Dunfield and J. Rasmussen for some torus knots. It turns out to be related to the q,t-Catalan numbers of A. Garsia and M. Haiman.

We obtain several results about representations of rational Cherednik algebras, and discuss their applications. Our first result is the Cohen-Macaulayness property (as modules over the polynomial ring) of Cherednik algebra modules with minimal support. Our second result is an explicit formula for the character of an irreducible minimal support module in type A_{n-1} for c=m/n, and an expression of its quasispherical part (i.e., the isotypic part of "hooks") in terms of the HOMFLY polynomial of a torus knot colored by a Young diagram. We use this formula and the work of Calaque, Enriquez and Etingof to give explicit formulas for the characters of the irreducible equivariant D-modules on the nilpotent cone for SL_m. Our third result is the construction of the Koszul-BGG complex for the rational Cherednik algebra, which generalizes the construction of the Koszul-BGG resolution by Berest-Etingof-Ginzburg and Gordon, and the calculation of its homology in type A. We also show in type A that the differentials in the Koszul-BGG complex are uniquely determined by the condition that they are nonzero homomorphisms of modules over the Cherednik algebra. Finally, our fourth result is the symmetry theorem, which identifies the quasispherical components in the representations with minimal support over the rational Cherednik algebras H_{m/n}(S_n) and H_{n/m}(S_m). In fact, we show that the simple quotients of the corresponding quasispherical subalgebras are isomorphic as filtered algebras. This symmetry has a natural interpretation in terms of invariants of torus knots.

We construct a series of combinatorial quandle-like knot invariants. We color regions of a knot diagram rather than lines and assign a weight to each coloring. Sets of these weights are the invariants we construct (colorings and weights depend on several parameters).

Using these invariants, we prove that left and right trefoils are not isotopic using this invariant (in a particular case).

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.