### ?

## Quantum Periods for Certain Four-Dimensional Fano Manifolds

Experimental Mathematics. 2020. Vol. 29. No. 2. P. 183-221.

We collect a list of known four-dimensional Fano manifolds and compute their quantum periods. This list includes all four-dimensional Fano manifolds of index greater than one, all four-dimensional toric Fano manifolds, all four-dimensional products of lower-dimensional Fano manifolds, and certain complete intersections in projective bundles.

Coates T., Galkin S., Kasprzyk A. et al., Quantum Periods For Certain Four-Dimensional Fano Manifolds / Cornell University. Series math "arxiv.org". 2014. No. 1406.4891.

We collect a list of known four-dimensional Fano manifolds and compute their quantum periods. This list includes all four-dimensional Fano manifolds of index greater than one, all four-dimensional toric Fano manifolds, all four-dimensional products of lower-dimensional Fano manifolds, and certain complete intersections in projective bundles. ...

Added: June 20, 2014

Coates T., Corti A., Galkin S. et al., Geometry and Topology 2016 Vol. 20 No. 1 P. 103-256

The quantum period of a variety X is a generating function for certain Gromov-Witten invariants of X which plays an important role in mirror symmetry. In this paper we compute the quantum periods of all 3-dimensional Fano manifolds. In particular we show that 3-dimensional Fano manifolds with very ample anticanonical bundle have mirrors given by ...

Added: November 18, 2014

Akhtar M., Coates T., Galkin S. et al., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2012 Vol. 8 No. 094 P. 1-707

Given a Laurent polynomial f, one can form the period of f: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the period and are closely connected with ...

Added: September 14, 2013

Galkin S., Belmans P., Mukhopadhyay S., Graph potentials and moduli spaces of rank two bundles on a curve / Cornell University. Series math "arxiv.org". 2020. No. 2009.05568.

We introduce graph potentials, which are Laurent polynomials associated to (colored) trivalent graphs. These graphs encode degenerations of curves to rational curves, and graph potentials encode degenerations of the moduli space of rank 2 bundles with fixed determinant. We show that the birational type of the graph potential only depends on the homotopy type of ...

Added: April 15, 2021

Galkin S., Golyshev V., Iritani H., Duke Mathematical Journal 2016 Vol. 165 No. 11 P. 2005-2077

We propose Gamma Conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class A_F to a Fano manifold F. We say that F satisfies Gamma Conjecture I if A_F equals the ...

Added: November 18, 2014

Coates T., Corti A., Galkin S. et al., Mirror Symmetry and Fano Manifolds / Cornell University. Series math "arxiv.org". 2012. No. 1212.1722.

We consider mirror symmetry for Fano manifolds, and describe how one can recover the classification of 3-dimensional Fano manifolds from the study of their mirrors. We sketch a program to classify 4-dimensional Fano manifolds using these ideas. ...

Added: September 14, 2013

Galkin S., The conifold point / Cornell University. Series math "arxiv.org". 2014. No. 1404.7388.

Consider a Laurent polynomial with real positive coefficients such that the origin is strictly inside its Newton polytope. Then it is strongly convex as a function of real positive argument. So it has a distinguished Morse critical point --- the unique critical point with real positive coordinates. As a consequence we obtain a positive answer ...

Added: May 4, 2014

Galkin S., Iritani H., Gamma conjecture via mirror symmetry / Cornell University. Series math "arxiv.org". 2015. No. 1508.00719.

The asymptotic behaviour of solutions to the quantum differential equation of a Fano manifold F defines a characteristic class A_F of F, called the principal asymptotic class. Gamma conjecture of Vasily Golyshev and the present authors claims that the principal asymptotic class A_F equals the Gamma class G_F associated to Euler's Γ-function. We illustrate in ...

Added: August 5, 2015

Galkin S., Iritani H., , in: Primitive Forms and Related Subjects — Kavli IPMU 2014. .: Tokyo: Mathematical Society of Japan, 2019.. P. 55-115.

The asymptotic behaviour of solutions to the quantum differential equation of a Fano manifold F defines a characteristic class A_F of F, called the principal asymptotic class.
Gamma conjecture of Vasily Golyshev and the present authors claims that the principal asymptotic class A_F equals the Gamma class associated to Euler's Gamma-function.
We illustrate in the case of ...

Added: September 1, 2018

Galkin S., Golyshev V., Iritani H., Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures / Cornell University. Series math "arxiv.org". 2014. No. 1404.6407.

We propose Gamma Conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class A_F to a Fano manifold F. We say that F satisfies Gamma Conjecture I if A_F equals the ...

Added: May 4, 2014

Cruz Morales J. A., Galkin S., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2013 Vol. 9 No. 005 P. 1-13

In this note we provide a new, algebraic proof of the excessive Laurent phenomenon for mutations of potentials (in the sense of [Galkin S., Usnich A., Preprint IPMU 10-0100, 2010]) by introducing to this theory the analogue of the upper bounds from [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1–52]. ...

Added: May 27, 2013

Galkin S., Rybakov S., A family of K3 surfaces and towers of algebraic curves over finite fields / Cornell University. Series math "arxiv.org". 2019. No. 1910.14379.

For a family of K3 surfaces we implement a variation of a general construction of towers of algebraic curves over finite fields given in a previous paper. As a result we get a good tower over k=𝔽_{p^2}, that is optimal if p=3. ...

Added: November 6, 2019

Gritsenko V., Никулин В. В., TRANSACTIONS OF THE MOSCOW MATHEMATICAL SOCIETY 2017 Т. 78 № 1 С. 89-100

Using our results about Lorentzian Kac--Moody algebras and arithmetic mirror symmetry, we give six series of examples of lattice-polarized K3 surfaces with automorphic discriminant. ...

Added: October 11, 2017

Coates T., Corti A., Galkin S. et al., , in: European Congress of Mathematics Kraków, 2 – 7 July, 2012. .: Zürich: European Mathematical Society Publishing house, 2014.. Ch. 16. P. 285-300.

We consider mirror symmetry for Fano manifolds, and describe how one can recover the classification of 3-dimensional Fano manifolds from the study of their mirrors. We sketch a program to classify 4-dimensional Fano manifolds using these ideas. ...

Added: February 19, 2014

Gusein-Zade S., International Mathematics Research Notices 2021 Vol. 2021 No. 16 P. 12305-12329

A.Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian groups and prove a "non-abelian" generalization of the statement about the equivariant Saito duality ...

Added: August 26, 2021

Gusein-Zade S., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2020 Vol. 16 No. 051 P. 1-15

P. Berglund, T. Hübsch, and M. Henningson proposed a method to construct mirror symmetric Calabi–Yau manifolds. They considered a pair consisting of an invertible polynomial and of a finite (abelian) group
of its diagonal symmetries together with a dual pair. A. Takahashi suggested a method to generalize this construction to symmetry groups generated by some diagonal ...

Added: October 27, 2020

Prokhorov Y., Zaidenberg M., New examples of cylindrical Fano fourfolds / Cornell University. Series math "arxiv.org". 2015. No. 1507.01748.

We construct new families of smooth Fano fourfolds with Picard rank 1, which contain cylinders, i.e., Zariski open subsets of form Z×, where Z is a quasiprojective variety. The affine cones over such a fourfold admit effective G_a-actions. Similar constructions of cylindrical Fano threefolds and fourfolds were done previously in [KPZ11, KPZ14, PZ15]. ...

Added: October 13, 2015

Galkin S., Apéry constants of homogeneous varieties / Cornell University. Series math "arxiv.org". 2016. No. 1604.04652.

For Fano manifolds we define Ap\'ery constants and Ap\'ery class as particular limits of ratios of coefficients of solutions of the quantum differential equation. We do numerical computations in case of homogeneous varieties. These numbers are identified to be polynomials in the values of Riemann zeta-function with natural arguments. ...

Added: April 19, 2016

Fonarev A., Kuznetsov A., Derived categories of curves as components of Fano manifolds / Cornell University. Series arXiv "math". 2016.

We prove that the derived category D(C) of a generic curve of genus greater than one embeds into the derived category D(M) of the moduli space M of rank two stable bundles on C with fixed determinant of odd degree. ...

Added: April 10, 2017

Galkin S., Shinder E., The Fano variety of lines and rationality problem for a cubic hypersurface / Cornell University. Series math "arxiv.org". 2014. No. 1405.5154.

We find a relation between a cubic hypersurface Y and its Fano variety of lines F(Y) in the Grothendieck ring of varieties. We prove that if the class of an affine line is not a zero-divisor in the Grothendieck ring of varieties, then Fano variety of lines on a smooth rational cubic fourfold is birational ...

Added: May 21, 2014

Prokhorov Y., Advances in Geometry 2013 Vol. 13 No. 3 P. 389-418

We classify Fano threefolds with only terminal singularities whose canonical class is
Cartier and divisible by 2 with the additional assumption that the G-invariant part of the Weil divisor
class group is of rank 1 with respect to an action of some group G. In particular, we find a lot of
examples of Fano 3-folds with “many” symmetries. ...

Added: October 7, 2013

Kuznetsov A., Debarre O., Gushel--Mukai varieties: classification and birationalities / Cornell University. Series math "arxiv.org". 2015.

This paper performs a systematic study of Gushel–Mukai varieties—Fano manifolds with Picard number 1, coindex 3, and degree 10 (higher-dimensional analogues of prime Fano threefolds of genus 6). We introduce a new approach to the classification of these varieties which includes mildly singular varieties, gives a criterion for an isomorphism of such varieties, and describes ...

Added: November 15, 2015

Basalaev A., Ionov A., Theoretical and Mathematical Physics 2021 Vol. 209 No. 2 P. 1491-1506

We study Landau-Ginzburg orbifolds $(f,G)$ with $f=x_1^n+\ldots+x_N^n$ and $G=S\ltimes G^d$, where $S\subseteq S_N$ and $G^d$ is either the maximal group of scalar symmetries of $f$ or the intersection of the maximal diagonal symmetries of $f$ with $\mathrm{SL}_N(\mathbb{C})$. We construct a mirror map between the corresponding phase spaces and prove that it is an isomorphism restricted ...

Added: November 19, 2021

Cheltsov I., Shramov K., Experimental Mathematics 2013 Vol. 22 No. 3 P. 313-326

We study del Pezzo surfaces that are quasismooth and well-formed weighted hypersurfaces. In particular, we find all such surfaces whose α-invariant of Tian is greater than 2/3. ...

Added: January 27, 2014