### Article

## c-Recursion for multi-point superconformal blocks. NS sector

We develop a recursive approach to computing Neveu-Schwarz conformal blocks associated with n-punctured Riemann surfaces. This work generalizes the results of [1] obtained recently for the Virasoro algebra. The method is based on the analysis of the analytic properties of the superconformal blocks considered as functions of the central charge *c*. It consists of two main ingredients: the study of the singular behavior of the conformal blocks and the analysis of their asymptotic properties when *c* tends to infinity. The proposed construction is applicable for computing multi-point blocks in different topologies. We consider some examples for genus zero and one with different numbers of punctures. As a by-product, we propose a new way to solve the recursion relations, which gives more efficient computational procedure and can be applied to SCFT case as well as to pure Virasoro blocks.

The sheaves of conformal blocks and conformal coinvariants of the twisted WZW model have a factorisation property and are locally free even at the boundary of the moduli space, where the elliptic KZ equations and the Baxter-Belavin elliptic r matrix degenerate to the trigonometric KZ equations and the trigonometric r matrix,o respectively. Etingof's construction of the elliptic KZ equations is geometrically interpreted.

We review and explain an infinite-dimensional counterpart of the Hurwitz theory realization (Alexeevski and Natanzon, Math. Russ. Izv. 72:3-24, 2008) of algebraic open-closed-string model à la Moore and Lazaroiu, where the closed and open sectors are represented by conjugation classes of permutations and the pairs of permutations, i.e. by the algebra of Young diagrams and bipartite graphs, respectively. An intriguing feature of this Hurwitz string model is the coexistence of two different multiplications, reflecting the deep interrelation between the theory of symmetric and linear groups, S∞ and GL(∞).

The recently proposed relation between conformal field theories in two dimensions and supersymmetric gauge theories in four dimensions predicts the existence of the distinguished basis in the space of local fields in CFT. This basis has a number of remarkable properties: one of them is the complete factorization of the coefficients of the operator product expansion. We consider a particular case of the U(r) gauge theory on {Mathematical expression} which corresponds to a certain coset conformal field theory and describe the properties of this basis. We argue that in the case p = 2, r = 2 there exist different bases. We give an explicit construction of one of them. For another basis we propose the formula for matrix elements.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.