### Article

## A method of graph reduction and its applications

The independent set problem for a given simple graph is to determine the size of a maximal set

of its pairwise non-adjacent vertices. We propose a new way of graph reduction leading to a new proof of

the NP-completeness of the independent set problem in the class of planar graphs and to the proof of NPcompleteness of this problem in the class of planar graphs having only triangular internal facets of maximal

vertex degree 18

The notion of a boundary graph property was recently introduced as a relaxation of that of a minimal property and was applied to several problems of both algorithmic and combinatorial nature. In the present paper, we first survey recent results related to this notion and then apply it to two algorithmic graph problems: Hamiltonian cycle and Vertex k-colorability. In particular, we discover the first two boundary classes for the Hamiltonian cycle problem and prove that for any k > 3 there is a continuum of boundary classes for Vertex k-colorability.

The Independent Set Problem for planar graphs is known to be NP-complete. In this paper, its polynomial solvability for some subclasses of planar graphs is proved.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

The problem of quick detection of central nodes in large networks is studied. There are many measures that allow to evaluate a topological importance of nodes of the network. Unfortunately, most of them cannot be applied to large networks due to their high computational complexity. However, if we narrow the initial network and apply these centrality measures to the sparse network, it is possible that the obtained set of central nodes will be similar to the set of central nodes in large networks. If these sets are similar, the centrality measures with a high computational complexity can be used for central nodes detection in large networks. To check the idea, several random networks were generated and different techniques of network reduction were considered. We also adapted some rules from social choice theory for the key nodes detection. As a result, we show how the initial network should be narrowed in order to apply centrality measures with a high computational complexity and maintain the set of key nodes of a large network.

This book constitutes the refereed proceedings of the 23rd Annual Symposium on Combinatorial Pattern Matching, CPM 2012, held in Helsinki, Finalnd, in July 2012. The 33 revised full papers presented together with 2 invited talks were carefully reviewed and selected from 60 submissions. The papers address issues of searching and matching strings and more complicated patterns such as trees, regular expressions, graphs, point sets, and arrays. The goal is to derive non-trivial combinatorial properties of such structures and to exploit these properties in order to either achieve superior performance for the corresponding computational problems or pinpoint conditions under which searches cannot be performed efficiently. The meeting also deals with problems in computational biology, data compression and data mining, coding, information retrieval, natural language processing, and pattern recognition.

*When a society needs to take a collective decision one could apply some aggregation method, particularly, voting. One of the main problems with voting is manipulation. We say a voting rule is vulnerable to manipulation if there exists at least one voter who can achieve a better voting result by misrepresenting his or her preferences. The popular approach to comparing manipulability of voting rules is defining complexity class of the corresponding manipulation problem. This paper provides a survey into manipulation complexity literature considering variety of problems with different assumptions and restrictions.*

This book constitutes the refereed proceedings of the 44th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2018, held in Krems, Austria, in January/February 2018. The 48 papers presented in this volume were carefully reviewed and selected from 97 submissions. They were organized in topical sections named: foundations of computer science; software engineering: advances methods, applications, and tools; data, information and knowledge engineering; network science and parameterized complexity; model-based software engineering; computational models and complexity; software quality assurance and transformation; graph structure and computation; business processes, protocols, and mobile networks; mobile robots and server systems; automata, complexity, completeness; recognition and generation; optimization, probabilistic analysis, and sorting; filters, configurations, and picture encoding; machine learning; text searching algorithms; and data model engineering.

A form for an unbiased estimate of the coefficient of determination of a linear regression model is obtained. It is calculated by using a sample from a multivariate normal distribution. This estimate is proposed as an alternative criterion for a choice of regression factors.