Article
Large ball probability, Gaussian comparison and anti-concentration
We derive tight non-asymptotic bounds for the Kolmogorov distance between the probabilities of two Gaussian elements to hit a ball in a Hilbert space. The key property of these bounds is that they are dimension-free and depend on the nuclear (Schatten-one) norm of the difference between the covariance operators of the elements and on the norm of the mean shift. The obtained bounds significantly improve the bound based on Pinsker's inequality via the Kullback-Leibler divergence. We also establish an anti-concentration bound for a squared norm of a non-centered Gaussian element in Hilbert space. The paper presents a number of examples motivating our results and applications of the obtained bounds to statistical inference and to high-dimensional CLT.
Upper bounds for the closeness of two centered Gaussian measures in the class of balls in a sepa- rable Hilbert space are obtained. The bounds are optimal with respect to the dependence on the spectra of the covariance operators of the Gaussian measures. The inequalities cannot be improved in the general case.
This book presents recent non-asymptotic results for approximations in multivariate statistical analysis. The book is unique in its focus on results with the correct error structure for all the parameters involved. Firstly, it discusses the computable error bounds on correlation coefficients, MANOVA tests and discriminant functions studied in recent papers. It then introduces new areas of research in high-dimensional approximations for bootstrap procedures, Cornish–Fisher expansions, power-divergence statistics and approximations of statistics based on observations with random sample size. Lastly, it proposes a general approach for the construction of non-asymptotic bounds, providing relevant examples for several complicated statistics. It is a valuable resource for researchers with a basic understanding of multivariate statistics.
Let X_1, ... ,X_n be i.i.d. sample in R^p with zero mean and the covariance matrix S. The problem of recovering the projector onto the eigenspace of S from these observations naturally arises in many applications. Recent technique from [Koltchinskii and Lounici, 2015b] helps to study the asymptotic distribution of the distance in the Frobenius norm between the true projector P_r on the subspace of the r-th eigenvalue and its empirical counterpart \hat{P}_r in terms of the effective trace of S. This paper offers a bootstrap procedure for building sharp confidence sets for the true projector P_r from the given data. This procedure does not rely on the asymptotic distribution of || P_r - \hat{P}_r ||_2 and its moments, it applies for small or moderate sample size n and large dimension p. The main result states the validity of the proposed procedure for finite samples with an explicit error bound on the error of bootstrap approximation. This bound involves some new sharp results on Gaussian comparison and Gaussian anti-concentration in high dimension. Numeric results confirm a nice performance of the method in realistic examples.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.