### Article

## Increasing the performance of a superconducting spin valve using a Heusler alloy

We have studied superconducting properties of spin-valve thin-layer heterostructures CoO_{x}/F1/Cu/F2/Cu/Pb in which the ferromagnetic F1 layer was made of Permalloy while for the F2 layer we have taken a specially prepared film of the Heusler alloy Co_{2}Cr_{1−x}Fe_{x}Al with a small degree of spin polarization of the conduction band. The heterostructures demonstrate a significant superconducting spin-valve effect, i.e., a complete switching on and off of the superconducting current flowing through the system by manipulating the mutual orientations of the magnetization of the F1 and F2 layers. The magnitude of the effect is doubled in comparison with the previously studied analogous multilayers with the F2 layer made of the strong ferromagnet Fe. Theoretical analysis shows that a drastic enhancement of the switching effect is due to a smaller exchange field in the heterostructure coming from the Heusler film as compared to Fe. This enables to approach an almost ideal theoretical magnitude of the switching in the

Heusler-based multilayer with a F2 layer thickness of ca. 1 nm.

We study the effect of the Fermi surface anisotropy (hexagonal warping) on the superconducting pair potential, induced in a three-dimensional topological insulator (TI) by proximity with an s-wave superconductor (S) in presence of a magnetic moment of a nearby ferromagnetic insulator (FI). In the previous studies similar problem was treated with a simplified Hamiltonian, describing an isotropic Dirac cone dispersion. This approximation is only valid near the Dirac point. However, in topological insulators the chemical potential often lies well above this point, where the Dirac cone is strongly anisotropic and its constant energy contour has a snowflake shape. Taking this shape into account we show that a very exotic pair potential is induced in the topological insulator surface. Based on the symmetry arguments we also discuss the possibility of a supercurrent flowing along the S/FI boundary, when a S/FI hybrid structure is formed on the TI surface.

We show that a weak external magneticfield affects significantly non-equilibrium quasiparticle (QP) distributions under the conditions of the inverse proximity effect using the single-electron hybrid turnstile as a generic example. Inverse proximity suppresses the superconducting gap in superconducting leads in the vicinity of turnstile junctions, thus trapping hot QPs in this region. An external magnetic field creates additional QP traps in the leads in the form of vortices or regions with a reduced superconducting gap resulting in the release of QPs away from junctions. We present a clear experimental evidence of the interplay of the inverse proximity effect and magnetic field revealing itself in the superconducting gap enhancement and significant improvement of the turnstile characteristics. The observed interplay and its theoretical explanation in the context of QP overheating are important for various superconducting and hybrid nanoelectronic devices, whichfind applications in quantum computation, photon detection and quantum metrology.

An increase of the magnetic moment in superconductor/ferromagnet (S/F) bilayers V(40nm)/F [F= Fe(1,3nm), Co(3nm), Ni(3nm)] was observed using SQUID magnetometry upon cooling below the superconducting transition temperature Tc in magnetic fields of 10 Oe to 50 Oe applied parallel to the sample surface. A similar increase, often called the paramagnetic Meissner effect (PME), was observed before in various superconductors and superconductor/ferromagnet systems. To explain the PME effect in the presented S/F bilayers a model based on a row of vortices located at the S/F interface is proposed. According to the model the magnetic moment induced below Tc consists of the paramagnetic contribution of the vortex cores and the diamagnetic contribution of the vortex-free region of the S layer. Since the thickness of the S layer is found to be 3-4 times less than the magnetic field penetration depth, this latter diamagnetic contribution is negligible. The model correctly accounts for the sign, the approximate magnitude and the field dependence of the paramagnetic and the Meissner contributions of the induced magnetic moment upon passing the superconducting transition of a ferromagnet/superconductor bilayer.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.