Article
Statistical inference for moving-average Lévy-driven processes: Fourier-based approach
We consider a new method of semiparametric statistical
estimation for the continuous-time moving-average Lévy
processes. We derive the convergence rates of the proposed
estimators and show that these rates are optimal in
minimax sense.
We consider N-component synchronization models defined in terms of stochastic particle systems with special interaction. For general (nonsymmetric) Markov models we discuss phenomenon of the long time stochastic synchronization. We study behavior of the system in different limit situations related to appropriate changes of variables and scalings. For N = 2 limit distributions are found explicitly.
The problem of minimizing the root mean square deviation of a uniform string with clamped ends from an equilibrium position is investigated. It is assumed that the initial conditions are specified and the ends of the string are clamped. The Fourier method is used, which enables the control problem with a partial differential equation to be reduced to a control problem with a denumerable system of ordinary differential equations. For the optimal control problem in the l2 space obtained, it is proved that the optimal synthesis contains singular trajectories and chattering trajectories. For the initial problem of the optimal control of the vibrations of a string it is also proved that there is a unique solution for which the optimal control has a denumerable number of switchings in a finite time interval.
In this paper, we introduce a principally new method for modelling the dependence structure between two L{\'e}vy processes. The proposed method is based on some special properties of the time-changed Levy processes and can be viewed as an reasonable alternative to the copula approach.
-
In this paper, we consider the problem of statistical inference for generalized Ornstein-Uhlenbeck processes of the type
\[
X_{t} = e^{-\xi_{t}} \left( X_{0} + \int_{0}^{t} e^{\xi_{u-}} d u \right),
\]
where \(\xi_s\) is a L{\'e}vy process. Our primal goal is to estimate the characteristics of the L\'evy process \(\xi\) from the low-frequency observations of the process \(X\). We present a novel approach towards estimating the L{\'e}vy triplet of \(\xi,\) which is based on the Mellin transform technique. It is shown that the resulting estimates attain optimal minimax convergence rates. The suggested algorithms are illustrated by numerical simulations.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.