Article
Structural transformations and mechanical properties of porous glasses under compressive loading
The role of porous structure and glass density in the response behavior to compressive deformation of amorphous materials is investigated via molecular dynamics simulations. The disordered, porous structures were prepared by quenching a high-temperature binary mixture below the glass transition point into the phase coexistence region. With decreasing average glass density, the pore morphology in quiescent samples varies from a random distribution of compact voids to complex pore networks embedded in a continuous glass phase. We find that during compressive loading at constant volume, the porous structure is linearly transformed in the elastic regime and the elastic modulus follows a power-law increase as a function of the average glass density. Upon further compression, pores deform significantly and coalesce into large voids leading to formation of domains with nearly homogeneous glass phase, which provides an enhanced resistance to deformation at high strain.
In coastal seas and straits, the interaction of barotropic tidal currents with the continental shelf, seamounts or sills is often observed to generate large-amplitude, horizontally propagating internal solitary waves. Typically these waves occur in regions of variable bottom topography, with the consequence that they are often modeled by nonlinear evolution equations of the Korteweg-de Vries type with
variable coecients. We shall review how these models are used to describe the propagation, deformation and disintegration of internal solitary waves as they propagate over the continental shelf and slope.
The quantum nuclear effects are studied in water using centroid molecular dynamics (CMD) method. The aim is the calibration of CMD implementation in LAMMPS. The calculated intramolecular energy, atoms gyration radii and radial distribution functions are shown in comparison with previous works. The work is assumed to be the step toward to solution of the discrepancy between the simulation results and the experimental data of liquid n-alkane properties in our previous works.
It is well recognized that excessive ice accumulation at low-temperature conditions can cause significant damage to civil infrastructure. The passive anti-icing surfaces provide a promising solution to suppress ice nucleation and enhance ice removal. However, despite extensive efforts, it remains a challenge to design anti-icing surfaces with low ice adhesion. Using all-atom molecular dynamics (MD) simulations, we show that surfaces with single-walled carbon nanotube array (CNTA) significantly reduce ice adhesion due to the extremely low solid areal fraction. It was found that the CNTA surface exhibits up to a 45% decrease in the ice adhesion strength in comparison with the atomically smooth graphene surface. The details of the ice detachment from the CNTA surface were examined for different water-carbon interaction energies and temperatures of the ice cube. Remarkably, the results of MD simulations demonstrate that the ice detaching strength depends linearly on the ratio of the ice-surface interaction energy and the ice temperature. These results open the possibility for designing novel robust surfaces with low ice adhesion for passive anti-icing applications.
This aim of this paper is the interpretation of the results of mechanical testing of materials to determine their properties under hot deformation. As an example, a simulation of rod stretching in superplasticity mode was considered. Comparing obtained data with the analytical solution was conducted.
Cooling of tokamak boundary plasma owing to radiation of non-fully stripped lithium ions is considered as a promising way for protection of plasma facing elements (PFE) in tokamak. It may be effectively realized when the main part of lithium ions are involved in the closed circuit of migration between plasma and PFE surface. Such an approach may be implemented with the use of lithium device whose hot (500-600 °C) area to be effected by plasma serves as a Li-emitter and the cold part (∼180 °C) as a Li-collector in the shadow. Capillary-pore system (CPS) provides the returning of collected and condensed lithium to emitting zone by capillary forces. The main goals of the last T-11M lithium experiments were investigating Li ions transport in the tokamak scrape of layer (SOL) and their collecting by different kinds of limiters. The design of devices based on lithium CPS with different ratio of emitting/collecting area is the main subject of this paper. © 2015 The Authors.
The application of mathematical modeling methods (with subsequent computer sales) to determine the parameters of accuracy geometry bands obtained with the new equipment and process the step deformation bands of hard alloys based on copper
This volume presents new results in the study and optimization of information transmission models in telecommunication networks using different approaches, mainly based on theiries of queueing systems and queueing networks .
The paper provides a number of proposed draft operational guidelines for technology measurement and includes a number of tentative technology definitions to be used for statistical purposes, principles for identification and classification of potentially growing technology areas, suggestions on the survey strategies and indicators. These are the key components of an internationally harmonized framework for collecting and interpreting technology data that would need to be further developed through a broader consultation process. A summary of definitions of technology already available in OECD manuals and the stocktaking results are provided in the Annex section.