### Article

## Log terminal singularities, platonic tuples and iteration of Cox rings

Looking at the well understood case of log terminal surface singularities, one observes that each of them is the quotient of a factorial one by a finite solvable group. The derived series of this group reflects an iteration of Cox rings of surface singularities. We extend this picture to log terminal singularities in any dimension coming with a torus action of complexity one. In this setting, the previously finite groups become solvable torus extensions. As explicit examples, we investigate compound du Val threefold singularities. We give a complete classification and exhibit all the possible chains of iterated Cox rings.

Let $G$ be a connected reductive group acting on an irreducible normal algebraic variety $X$. We give a slightly improved version of Local Structure Theorems obtained by Knop and Timashev, which describe the action of some parabolic subgroup of $G$ on an open subset of $X$. We also extend various results of Vinberg and Timashev on the set of horospheres in $X$. We construct a family of nongeneric horospheres in $X$ and a variety $\Hor$ parameterizing this family, such that there is a rational $G$-equivariant symplectic covering of cotangent vector bundles $T^*\Hor \dashrightarrow T^*X$. As an application we recover the description of the image of the moment map of $T^*X$ obtained by Knop. In our proofs we use only geometric methods which do not involve differential operators.

Proposed a model of financial bubbles and crises based upon the methodology of complex systems analysis. The irrationality of financial investors, as it was well known, had been empirically explained by «the greater fool theory». This process, in modern terms, was represented as the autocatalytic process leading to a system's singularity. It was shown how the procedures (slice and dice) of a CDO synthesis generated the excess growth of the securitized assets value. The latter being coupled with the high le-verage might produce the total collapse of a financial system. On a macrolevel the behaviour the of a system was modeled by a differential equation depending on three parameters. Such an outcome was explained on the system's microlevel as a process of financial percolation which was modeled, quite surprisingly, by the same equation of a Bernoulli type. Invariant constants of percolation were used to estimate different parameters of a model. The model application to the study of 2007-2010 credit crunch has given rise to the impressively coherent results in terms of probabilities and the return time periods of critical events that took place on the global financial markets.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 R. Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny of G is bijective; this answers Grothendieck's question. In particular, for char(k)=0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char(k)=0, that the algebra k[G]^G of class functions on G is generated by rk(G) elements. We describe, for arbitrary G, a minimal generating set of k[G]^G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]^G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G; this answers the other Grothendieck's question.

Cox rings are significant global invariants of algebraic varieties, naturally generalizing homogeneous coordinate rings of projective spaces. This book provides a largely self-contained introduction to Cox rings, with a particular focus on concrete aspects of the theory. Besides the rigorous presentation of the basic concepts, other central topics include the case of finitely generated Cox rings and its relation to toric geometry; various classes of varieties with group actions; the surface case; and applications in arithmetic problems, in particular Manin's conjecture. The introductory chapters require only basic knowledge in algebraic geometry. The more advanced chapters also touch on algebraic groups, surface theory, and arithmetic geometry. Each chapter ends with exercises and problems. These comprise mini-tutorials and examples complementing the text, guided exercises for topics not discussed in the text, and, finally, several open problems of varying difficulty.

This book introduces a 'Big History' perspective to understand the acceleration of social, technological and economic trends towards a near-term singularity, marking a radical turning point in the evolution of our planet. It traces the emergence of accelerating innovation rates through global history and highlights major historical transformations throughout the evolution of life, humans, and civilization. The authors pursue an interdisciplinary approach, also drawing on concepts from physics and evolutionary biology, to offer potential models of the underlying mechanisms driving this acceleration, along with potential clues on how it might progress. The contributions gathered here are divided into five parts, the first of which studies historical mega-trends in relation to a variety of aspects including technology, population, energy, and information. The second part is dedicated to a variety of models that can help understand the potential mechanisms, and support extrapolation. In turn, the third part explores various potential future scenarios, along with the paths and decisions that are required. The fourth part presents philosophical perspectives on the potential deeper meaning and implications of the trend towards singularity, while the fifth and last part discusses the implications of the Search for Extraterrestrial Intelligence (SETI). Given its scope, the book will appeal to scholars from various disciplines interested in historical trends, technological change and evolutionary processes.

Proposed a model of financial bubbles and crises based upon the methodology of complex systems analysis. It was shown how the procedures (slice and dice) of a CDO synthesis generated the excess growth of the securitized assets value. The latter being coupled with the high leverage might produce the total collapse of a financial system. On a macrolevel of a system its behaviour was modeled by a differential equation depending on three parameters. The irrationality of financial investors, as it was well known, had been empirically explained by «the greater fool theory». This process, in modern terms, was represented as the autocatalytic process leading to a system's singularity. Such an outcome was explained on the system's microlevel as a process of financial percolation which was modeled, quite surprisingly, by the same equation of a Bernoulli type. Invariant constants of percolation were used to estimate different parameters of a model. The model application to the study of 2007-2010 credit crunch has given rise to the impressively coherent results in terms of probabilities and the return time periods of critical events that took place on the global financial markets.

Fascinating and surprising developments are taking place in the classification of algebraic varieties. Work of Hacon and McKernan and many others is causing a wave of breakthroughs in the Minimal Model Program: we now know that for a smooth projective variety the canonical ring is finitely generated. These new results and methods are reshaping the field. Inspired by this exciting progress, the editors organized a meeting at Schiermonnikoog and invited leading experts to write papers about the recent developments. The result is the present volume, a lively testimony of the sudden advances that originate from these new ideas. This volume will be of interest to a wide range of pure mathematicians, but will appeal especially to algebraic and analytic geometers.

Exploring Bass’ Triangulability Problem on unipotent algebraic subgroups of the affine Cremona groups, we prove a triangulability criterion, the existence of nontriangulable connected solvable affine algebraic subgroups of the Cremona groups, and stable triangulability of such subgroups; in particular, in the stable range we answer Bass’ Triangulability Problem in the affirmative. To this end we prove a theorem on invariant subfields of 1-extensions. We also obtain a general construction of all rationally triangulable subgroups of the Cremona groups and, as an application, classify rationally triangulable connected one-dimensional unipotent affine algebraic subgroups of the Cremona groups up to conjugacy.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.