Article
Kostka-Shoji polynomials and Lusztig's convolution diagram
We propose an r-variable version of Kostka-Shoji polynomials K_{λμ} for r-multipartitions λ, μ. Our version has positive integral coefficients and encodes the graded multiplicities in the space of global sections of a line bundle over Lusztig’s iterated convolution diagram for the cyclic quiver Ã_{r−1}.
We study the singularities of the irreducible components of the Springer fiber over a nilpotent element N with N^2=0 in a Lie algebra of type A or D (the so-called two columns case). We use Frobenius splitting techniques to prove that these irreducible components are normal, Cohen-Macaulay, and have rational singularities.
Let $Fl^a_\lambda$ be the PBW degeneration of the flag varieties of type $A_{n-1}$. These varieties are singular and are acted upon with the degenerate Lie group $SL_n^a$. We prove that $Fl^a_\lambda$ have rational singularities, are normal and locally complete intersections, and construct a desingularization $R_\lambda$ of $Fl^a_\lambda$. The varieties $R_\lambda$ can be viewed as towers of successive $P^1$-fibrations, thus providing an analogue of the classical Bott-Samelson-Demazure-Hansen desingularization. We prove that the varieties $R_\lambda$ are Frobenius split. This gives us Frobenius splitting for the degenerate flag varieties and allows to prove the Borel-Weil type theorem for $Fl^a_\lambda$. Using the Atiyah-Bott-Lefschetz formula for $R_\la$, we compute the $q$-characters of the highest weight $\msl_n$-modules.
We introduce a new approach to the enumeration of rational slope parking functions with respect to the area and a generalized dinv statistics, and relate the combinatorics of parking functions to that of affine permutations. We relate our construction to two previously known combinatorial constructions: Haglund's bijection exchanging the pairs of statistics (area,dinv) and (bounce,area) on Dyck paths, and Pak-Stanley labeling of the regions of k-Shi hyperplane arrangements by k-parking functions. Essentially, our approach can be viewed as a generalization and a unification of these two constructions. We also relate our combinatorial constructions to representation theory. We derive new formulas for the Poincare polynomials of certain affine Springer fibers and describe a connection to the theory of finite dimensional representations of DAHA and nonsymmetric Macdonald polynomials.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.