### Article

## Machine Learning Photons Separation in the LHCb Calorimeter

Reconstruction and identification in calorimeters of modern High Energy Physics experiments is a complicated task. Solutions are usually driven by a priori knowledge about expected properties of reconstructed objects. Such an approach is also used to distinguish single photons in the electromagnetic calorimeter of the LHCb detector on LHC from overlapping photons produced from high momentum pi0 decays. We studied an alternative solution based on applying machine learning techniques to primary calorimeter information, that are energies collected in individual cells around the energy cluster.

Constructing such a discriminator from “first principles” allowed improve separation performance from 80% to 93%, that means reducing primary photons fake rate by factor of two.

In presentation we discuss different approaches to the problem, architecture of the classifier, its optimization, and compare performance of the ML approach with classical one.

The paper makes a brief introduction into multiple classifier systems and describes a particular algorithm which improves classification accuracy by making a recommendation of an algorithm to an object. This recommendation is done under a hypothesis that a classifier is likely to predict the label of the object correctly if it has correctly classified its neighbors. The process of assigning a classifier to each object involves here the apparatus of Formal Concept Analysis. We explain the principle of the algorithm on a toy example and describe experiments with real-world datasets.

The paper deals with the problems of creating and tuning a system of automated anaphora resolution for Russian. Such a system is introduced, combining rule-based and machine learning approaches. It shows F-measure from 0.51 to 0.59. Freeling serves as an underlying morphological layer and an account of its quality is given, with its influence on anaphora resolution workflow. The anaphora resolution system itself is available to download and use, coming with online demo.

The volume contains the abstracts of the 12th International Conference "Intelligent Data Processing: Theory and Applications". The conference is organized by the Russian Academy of Sciences, the Federal Research Center "Informatics and Control" of the Russian Academy of Sciences and the Scientific and Coordination Center "Digital Methods of Data Mining". The conference has being held biennially since 1989. It is one of the most recognizable scientific forums on data mining, machine learning, pattern recognition, image analysis, signal processing, and discrete analysis. The Organizing Committee of IDP-2018 is grateful to Forecsys Co. and CFRS Co. for providing assistance in the conference preparation and execution. The conference is funded by RFBR, grant 18-07-20075. The conference website http://mmro.ru/en/.

Data management and analysis is one of the fastest growing and most challenging areas of research and development in both academia and industry. Numerous types of applications and services have been studied and re-examined in this field resulting in this edited volume which includes chapters on effective approaches for dealing with the inherent complexity within data management and analysis. This edited volume contains practical case studies, and will appeal to students, researchers and professionals working in data management and analysis in the business, education, healthcare, and bioinformatics areas.

In an effort to make reading more accessible, an automated readability formula can help students to retrieve appropriate material for their language level. This study attempts to discover and analyze a set of possible features that can be used for single-sentence readability prediction in Russian. We test the influence of syntactic features on predictability of structural complexity. The readability of sentences from SynTagRus corpus was marked up manually and used for evaluation.

This paper is an overview of the current issues and tendencies in Computational linguistics. The overview is based on the materials of the conference on computational linguistics COLING’2012. The modern approaches to the traditional NLP domains such as pos-tagging, syntactic parsing, machine translation are discussed. The highlights of automated information extraction, such as fact extraction, opinion mining are also in focus. The main tendency of modern technologies in Computational linguistics is to accumulate the higher level of linguistic analysis (discourse analysis, cognitive modeling) in the models and to combine machine learning technologies with the algorithmic methods on the basis of deep expert linguistic knowledge.

We present a universal method for algorithmic trading in Stock Market which performs asymptotically at least as well as any stationary trading strategy that computes the investment at each step using continuous function of the side information. In the process of the game, a trader makes decisions using predictions computed by a randomized well-calibrated algorithm. We use Dawid's notion of calibration with more general checking rules and some modication of Kakade and Foster's randomized rounding algorithm for computing the well-calibrated forecasts. The method of randomized calibration is combined with Vovk's method of defensive forecasting in RKHS. Unlike in statistical theory, no stochastic assumptions are made about the stock prices.

A method based on the spectral analysis of thermowave oscillations formed under the effect of radiation of lasers operated in a periodic pulsed mode is developed for investigating the state of the interface of multilayered systems. The method is based on high sensitivity of the shape of the oscillating component of the pyrometric signal to adhesion characteristics of the phase interface. The shape of the signal is quantitatively estimated using the correlation coefficient (for a film–interface system) and the transfer function (for multilayered specimens).

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.