### Article

## Numerical optimization for Artificial Retina Algorithm

High-energy physics experiments rely on reconstruction of the trajectories of particles produced at the interaction point. This is a challenging task, especially in the high track multiplicity environment generated by p-p collisions at the LHC energies. A typical event includes hundreds of signal examples (interesting decays) and a significant amount of noise (uninteresting examples). This work describes a modification of the Artificial Retina algorithm for fast track finding: numerical optimization methods were adopted for fast local track search. This approach allows for considerable reduction of the total computational time per event. Test results on simplified simulated model of LHCb VELO (VErtex LOcator) detector are presented. Also this approach is well-suited for implementation of paralleled computations as GPGPU which look very attractive in the context of upcoming detector upgrades.

Pattern structures, an extension of FCA to data with complex descriptions, propose an alternative to conceptual scaling (binarization) by giving direct way to knowledge discovery in complex data such as logical formulas, graphs, strings, tuples of numerical intervals, etc. Whereas the approach to classification with pattern structures based on preceding generation of classifiers can lead to double exponent complexity, the combination of lazy evaluation with projection approximations of initial data, randomization and parallelization, results in reduction of algorithmic complexity to low degree polynomial, and thus is feasible for big data.

The proceedings of the 11th International Conference on Service-Oriented Computing (ICSOC 2013), held in Berlin, Germany, December 2–5, 2013, contain high-quality research papers that represent the latest results, ideas, and positions in the field of service-oriented computing. Since the first meeting more than ten years ago, ICSOC has grown to become the premier international forum for academics, industry researchers, and practitioners to share, report, and discuss their ground-breaking work. ICSOC 2013 continued along this tradition, in particular focusing on emerging trends at the intersection between service-oriented, cloud computing, and big data.

The practical relevance of process mining is increasing as more and more event data become available. Process mining techniques aim to discover, monitor and improve real processes by extracting knowledge from event logs. The two most prominent process mining tasks are: (i) process discovery: learning a process model from example behavior recorded in an event log, and (ii) conformance checking: diagnosing and quantifying discrepancies between observed behavior and modeled behavior. The increasing volume of event data provides both opportunities and challenges for process mining. Existing process mining techniques have problems dealing with large event logs referring to many different activities. Therefore, we propose a generic approach to decompose process mining problems. The decomposition approach is generic and can be combined with different existing process discovery and conformance checking techniques. It is possible to split computationally challenging process mining problems into many smaller problems that can be analyzed easily and whose results can be combined into solutions for the original problems.

In 2015-2016 the Department of Communication, Media and Design of the National Research University “Higher School of Economics” in collaboration with non-profit organization ROCIT conducted research aimed to construct the Index of Digital Literacy in Russian Regions. This research was the priority and remain unmatched for the momentIn 2015-2016 the Department of Communication, Media and Design of the National Research University “Higher School of Economics” in collaboration with non-profit organization ROCIT conducted research aimed to construct the Index of Digital Literacy in Russian Regions. This research was the priority and remain unmatched for the moment

This book constitutes the refereed proceedings of the First International Conference on Data Compression, Communications and Processing held in Palinuro, Italy, in June 2011.

The article is dedicated to the analysis of Big Data perspective in jurisprudence. It is proved that Big Data have to be used as the explanatory and predictable tool. The author describes issues concerning Big Data application in legal research. The problems are technical (data access, technical imperfections, data verification) and informative (interpretation of data and correlations). It is concluded that there is the necessity to enhance Big Data investigations taking into account the abovementioned limits.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Let G be a semisimple algebraic group whose decomposition into the product of simple components does not contain simple groups of type A, and P⊆G be a parabolic subgroup. Extending the results of Popov [7], we enumerate all triples (G, P, n) such that (a) there exists an open G-orbit on the multiple flag variety G/P × G/P × . . . × G/P (n factors), (b) the number of G-orbits on the multiple flag variety is finite.

I give the explicit formula for the (set-theoretical) system of Resultants of m+1 homogeneous polynomials in n+1 variables