### ?

## Towards mirror symmetry for varieties of general type

Advances in Mathematics. 2017. Vol. 308. P. 208-275.

The goal of this paper is to propose a theory of mirror symmetry for varieties of general type. Using Landau–Ginzburg mirrors as motivation, we describe the mirror of a hypersurface of general type (and more generally varieties of non-negative Kodaira dimension) as the critical locus of the zero fibre of a certain Landau–Ginzburg potential. The critical locus carries a perverse sheaf of vanishing cycles. Our main result shows that one obtains the interchange of Hodge numbers expected in mirror symmetry. This exchange is between the Hodge numbers of the hypersurface and certain Hodge numbers defined using a mixed Hodge structure on the hypercohomology of the perverse sheaf.

Galkin S., Belmans P., Mukhopadhyay S., / Cornell University. Series math "arxiv.org". 2020. No. 2009.05568.

We introduce graph potentials, which are Laurent polynomials associated to (colored) trivalent graphs. These graphs encode degenerations of curves to rational curves, and graph potentials encode degenerations of the moduli space of rank 2 bundles with fixed determinant. We show that the birational type of the graph potential only depends on the homotopy type of ...

Added: April 15, 2021

Ilten N. O., Lewis J., Victor Przyjalkowski, Journal of Algebra 2013 Vol. 374 P. 104-121

We show that every Picard rank one smooth Fano threefold has a weak Landau–Ginzburg model coming from a toric degeneration. The fibers of these Landau–Ginzburg models can be compactified to K3 surfaces with Picard lattice of rank 19. We also show that any smooth Fano variety of arbitrary dimension which is a complete intersection of ...

Added: July 2, 2013

Cheltsov I., Przyjalkowski V., / Cornell University. Series arXiv "math". 2018.

We verify Katzarkov-Kontsevich-Pantev conjecture for Landau-Ginzburg models of smooth Fano threefolds. ...

Added: December 3, 2018

Galkin S., Rybakov S., / Cornell University. Series math "arxiv.org". 2019. No. 1910.14379.

For a family of K3 surfaces we implement a variation of a general construction of towers of algebraic curves over finite fields given in a previous paper. As a result we get a good tower over k=𝔽_{p^2}, that is optimal if p=3. ...

Added: November 6, 2019

Ballard M., Deliu D., Favero D. et al., Journal of the European Mathematical Society 2017 Vol. 19 No. 4 P. 1127-1158

We provide a geometric approach to constructing Lefschetz collections and Landau–Ginzburg homological projective duals from a variation of Geometric Invariant Theory quotients. This approach yields homological projective duals for Veronese embeddings in the setting of Landau–Ginzburg models. Our results also extend to a relative homological projective duality framework. ...

Added: October 23, 2017

Barannikov S., / hal.archives-ouvertes.fr (CNRS). Series HAL "math". 2018. No. 01804639.

The construction from [B06], see also [B10], of cohomology classes of compactified moduli spaces of Riemann surfaces, starting from a derivation of associative whose square is nonzero, is generalized to the case of A-infinity algebras. It is shown that the constructed cohomology classes define Cohomological Field Theory. ...

Added: October 25, 2018

Kalashnikov E. G., / arXiv. Series arXiv "arXiv". 2020.

We introduce a superpotential for partial flag varieties of type A. This is a map W:Y∘→C, where Y∘ is the complement of an anticanonical divisor on a product of Grassmannians. The map W is expressed in terms of Plücker coordinates of the Grassmannian factors. This construction generalizes the Marsh--Rietsch Plücker coordinate mirror for Grassmannians. We show that in a distinguished cluster ...

Added: November 26, 2020

Galkin S., / Cornell University. Series math "arxiv.org". 2014. No. 1404.7388.

Consider a Laurent polynomial with real positive coefficients such that the origin is strictly inside its Newton polytope. Then it is strongly convex as a function of real positive argument. So it has a distinguished Morse critical point --- the unique critical point with real positive coordinates. As a consequence we obtain a positive answer ...

Added: May 4, 2014

Lunts V., Przyjalkowski V., Advances in Mathematics 2018 Vol. 329 P. 189-216

We consider the conjectures of Katzarkov, Kontsevich, and Pantev
about Landau--Ginzburg Hodge numbers associated to tamely compactifiable Landau--Ginzburg models. We test these conjectures
in case of dimension two, verifying some and giving a counterexample to the other. ...

Added: February 23, 2018

Przyjalkowski V., Shramov K., International Mathematics Research Notices 2015 Vol. 21 P. 11302-11332

We prove that the Hodge number h1,N−1(X) of an N-dimensional (N 3) Fano complete intersection X is less by one then the number of irreducible components of the central fiber of (any) Calabi–Yau compactification of Givental’s Landau–Ginzburg model for X. ...

Added: October 12, 2015

Galkin S., Iritani H., / Cornell University. Series math "arxiv.org". 2015. No. 1508.00719.

The asymptotic behaviour of solutions to the quantum differential equation of a Fano manifold F defines a characteristic class A_F of F, called the principal asymptotic class. Gamma conjecture of Vasily Golyshev and the present authors claims that the principal asymptotic class A_F equals the Gamma class G_F associated to Euler's Γ-function. We illustrate in ...

Added: August 5, 2015

Coates T., Galkin S., Kasprzyk A. et al., Experimental Mathematics 2020 Vol. 29 No. 2 P. 183-221

We collect a list of known four-dimensional Fano manifolds and compute their quantum periods. This list includes all four-dimensional Fano manifolds of index greater than one, all four-dimensional toric Fano manifolds, all four-dimensional products of lower-dimensional Fano manifolds, and certain complete intersections in projective bundles. ...

Added: September 1, 2018

Coates T., Corti A., Galkin S. et al., / Cornell University. Series math "arxiv.org". 2012. No. 1212.1722.

We consider mirror symmetry for Fano manifolds, and describe how one can recover the classification of 3-dimensional Fano manifolds from the study of their mirrors. We sketch a program to classify 4-dimensional Fano manifolds using these ideas. ...

Added: September 14, 2013

Coates T., Corti A., Galkin S. et al., Geometry and Topology 2016 Vol. 20 No. 1 P. 103-256

The quantum period of a variety X is a generating function for certain Gromov-Witten invariants of X which plays an important role in mirror symmetry. In this paper we compute the quantum periods of all 3-dimensional Fano manifolds. In particular we show that 3-dimensional Fano manifolds with very ample anticanonical bundle have mirrors given by ...

Added: November 18, 2014

Ionov A., / Cornell University. Series arXiv:1504.07930 "math.arxiv". 2015.

Cardy-Frobenius algebra is the algebraic structure on the space of states in open-closed topological field theory. We prove that every semisimple super Cardy-Frobenius algebras is the direct sum of the super Cardy-Frobenius algebras of three simple types. We also apply our results to singularity theory via Landau-Ginzburg models and matrix factorizations. ...

Added: November 8, 2016

Barannikov S., Arnold Mathematical Journal 2019 Vol. 5 No. 1 P. 97-104

The EA-matrix integrals, introduced in Barannikov (Comptes Rendus Math 348:359–362, 2006), are studied in the case of graded associative algebras with odd or even scalar product. I prove that the EA-matrix integrals for associative algebras with scalar product are integrals of equivariantly closed differential forms with respect to the Lie algebra glN(A)glN(A). ...

Added: June 4, 2019

Ebeling W., Gusein-Zade S., International Mathematics Research Notices 2021 Vol. 2021 No. 16 P. 12305-12329

A.Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian groups and prove a "non-abelian" generalization of the statement about the equivariant Saito duality ...

Added: August 26, 2021

Akhtar M., Coates T., Galkin S. et al., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2012 Vol. 8 No. 094 P. 1-707

Given a Laurent polynomial f, one can form the period of f: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the period and are closely connected with ...

Added: September 14, 2013

Coates T., Galkin S., Kasprzyk A. et al., / Cornell University. Series math "arxiv.org". 2014. No. 1406.4891.

We collect a list of known four-dimensional Fano manifolds and compute their quantum periods. This list includes all four-dimensional Fano manifolds of index greater than one, all four-dimensional toric Fano manifolds, all four-dimensional products of lower-dimensional Fano manifolds, and certain complete intersections in projective bundles. ...

Added: June 20, 2014

Coates T., Corti A., Galkin S. et al., , in : European Congress of Mathematics Kraków, 2 – 7 July, 2012. : Zürich : European Mathematical Society Publishing house, 2014. Ch. 16. P. 285-300.

We consider mirror symmetry for Fano manifolds, and describe how one can recover the classification of 3-dimensional Fano manifolds from the study of their mirrors. We sketch a program to classify 4-dimensional Fano manifolds using these ideas. ...

Added: February 19, 2014

Katzarkov L. V., Kontsevich M., Pantev T., Journal of Differential Geometry 2017 Vol. 105 No. 1 P. 55-117

In this paper we prove the smoothness of the moduli space of Landau–Ginzburg models. We formulate and prove a Bogomolov–Tian–Todorov theorem for the deformations of Landau–Ginzburg models, develop the necessary Hodge theory for varieties with potentials, and prove a double degeneration statement needed for the unobstructedness result. We discuss the various definitions of Hodge numbers ...

Added: October 23, 2017

Gusein-Zade S., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2020 Vol. 16 No. 051 P. 1-15

P. Berglund, T. Hübsch, and M. Henningson proposed a method to construct mirror symmetric Calabi–Yau manifolds. They considered a pair consisting of an invertible polynomial and of a finite (abelian) group
of its diagonal symmetries together with a dual pair. A. Takahashi suggested a method to generalize this construction to symmetry groups generated by some diagonal ...

Added: October 27, 2020

Sawada T., Li Y., Pizlo Z., Symmetry 2011 Vol. 3 No. 2 P. 365-388

Added: September 23, 2014

Iliev A., Katzarkov L., Victor Przyjalkowski, Proceedings of the Edinburgh Mathematical Society 2014 Vol. 57 P. 145-173

This paper suggests a new approach to questions of rationality of threefolds based on category theory. Following M. Ballard, D. Favero, L. Katzarkov (ArXiv:1012.0864) and D. Favero, L. Katzarkov (Noether--Lefschetz Spectra and Algebraic cycles, in preparation) we enhance constructions from A. Kuznetsov (arXiv:0904.4330) by introducing Noether--Lefschetz spectra --- an interplay between Orlov spectra (C. Oliva, ...

Added: July 2, 2013