### Article

## Exploring first-order phase transitions with population annealing

Population annealing is a hybrid of sequential and Markov chain Monte Carlo methods geared towards the efficient parallel simulation of systems with complex free-energy landscapes. Systems with first-order phase transitions are among the problems in computational physics that are difficult to tackle with standard methods such as local-update simulations in the canonical ensemble, for example with the Metropolis algorithm. It is hence interesting to see whether such transitions can be more easily studied using population annealing. We report here our preliminary observations from population annealing runs for the two-dimensional Potts model with *q* > 4, where it undergoes a first-order transition.

In the given paper the aggregated randomized indices method is modified for credit scoring. Coefficients of the modified method can be calibrated on a massive training set in comparison with a standard version. Different credit scoring models are analyzed, i.e. with a binary scale and a continuous one. The Monte Carlo method is applied to measure the efficiency of models.

We observe the self-assembling of the dipolar hard sphere particles at low temperature by Monte Carlo simulation. We find different types of stable structures of dipolar particles which appear when the isotropic phase of the system becomes unstable. Specifically, we find an interesting case of parallel cylindrical domains. The value of the total dipole moment of each domain is significantly large compared to the average value of the whole system. Models with dipolar interactions may form structures comprised of layers with anti-parallel dipole orientation.

In this paper we present a novel approach towards variance reduction for discretised diffusion processes. The proposed approach involves specially constructed control variates and allows for a significant reduction in the variance for the terminal functionals. In this way the complexity order of the standard Monte Carlo algorithm (ε−3) can be reduced down to ε−2 log(ε−1) in case of the Euler scheme with ε being the precision to be achieved. These theoretical results are illustrated by several numerical examples.

The paper suggests an original credit-risk based model for deposit insurance fund adequacy assessment. The fund is treated as a portfolio of contingent liabilities to the insured deposit-holders. The fund adequacy assessment problem is treated as an economic capital adequacy problem. Implied credit rating is used as the target indicator of solvency. This approach is consistent with the contemporary risk management paradigm and the recommendations of the Basel II Capital Accord. The target level of the fund corresponding to the target solvency standard is estimated in a Monte Carlo simulation framework using the actual data on the Russian banking system covering 1998-2005. Author acknowledges the generous support and fruitful discussions with representatives of the Russian Deposit Insurance Agency. The author expresses his personal views and not the views of the Agency.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

The Handbook of CO₂ in Power Systems' objective is to include the state-of-the-art developments that occurred in power systems taking CO₂ emission into account. The book includes power systems operation modeling with CO₂ emissions considerations, CO₂ market mechanism modeling, CO₂ regulation policy modeling, carbon price forecasting, and carbon capture modeling. For each of the subjects, at least one article authored by a world specialist on the specific domain is included.

By using superconducting quantum interference device (SQUID) magnetometry, we investigated anisotropic high-field (H less than or similar to 7T) low-temperature (10 K) magnetization response of inhomogeneous nanoisland FeNi films grown by rf sputtering deposition on Sitall (TiO2) glass substrates. In the grown FeNi films, the FeNi layer nominal thickness varied from 0.6 to 2.5 nm, across the percolation transition at the d(c) similar or equal to 1.8 nm. We discovered that, beyond conventional spin-magnetism of Fe21Ni79 permalloy, the extracted out-of-plane magnetization response of the nanoisland FeNi films is not saturated in the range of investigated magnetic fields and exhibits paramagnetic-like behavior. We found that the anomalous out-of-plane magnetization response exhibits an escalating slope with increase in the nominal film thickness from 0.6 to 1.1 nm, however, it decreases with further increase in the film thickness, and then practically vanishes on approaching the FeNi film percolation threshold. At the same time, the in-plane response demonstrates saturation behavior above 1.5-2T, competing with anomalously large diamagnetic-like response, which becomes pronounced at high magnetic fields. It is possible that the supported-metal interaction leads to the creation of a thin charge-transfer (CT) layer and a Schottky barrier at the FeNi film/Sitall (TiO2) interface. Then, in the system with nanoscale circular domains, the observed anomalous paramagnetic-like magnetization response can be associated with a large orbital moment of the localized electrons. In addition, the inhomogeneous nanoisland FeNi films can possess spontaneous ordering of toroidal moments, which can be either of orbital or spin origin. The system with toroidal inhomogeneity can lead to anomalously strong diamagnetic-like response. The observed magnetization response is determined by the interplay between the paramagnetic-and diamagnetic-like contributions.