### Article

## More results on weighted independent domination

Weighted independent domination is an NP-hard graph problem, which remains computationally intractable in many restricted graph classes. In particular, the problem is NP-hard in the classes of sat-graphs and chordal graphs. We strengthen these results by showing that the problem is NP-hard in a proper subclass of the intersection of sat-graphs and chordal graphs. On the other hand, we identify two new classes of graphs where the problem admits polynomial-time solutions.

We completely determine the complexity status of the dominating set problem for hereditary graph classes defined by forbidden induced subgraphs with at most five vertices.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

We study the computational complexity of the dominating set problem for hereditary graph classes, i.e., classes of simple unlabeled graphs closed under deletion of vertices. Every hereditary class can be defined by a set of its forbidden induced subgraphs. There are numerous open cases for the complexity of the problem even for hereditary classes with small forbidden structures. We completely determine the complexity of the problem for classes defined by forbidding a five-vertex path and any set of fragments with at most five vertices. Additionally, we also prove polynomial-time solvability of the problem for some two classes of a similar type. The notion of a boundary class is a helpful tool for analyzing the computational complexity of graph problems in the family of hereditary classes. Three boundary classes were known for the dominating set problem prior to this paper. We present a new boundary class for it.

We completely determine the complexity status of the vertex 3-colorability problem for the problem restricted to all hereditary classes defined by at most 3 forbidden induced subgraphs each on at most 5 vertices. We also present a complexity dichotomy for the problem and the family of all hereditary classes defined by forbidding an induced *bull* and any set of induced subgraphs each on at most 5 vertices.

A form for an unbiased estimate of the coefficient of determination of a linear regression model is obtained. It is calculated by using a sample from a multivariate normal distribution. This estimate is proposed as an alternative criterion for a choice of regression factors.