### Article

## Deep neural networks and maximum likelihood search for approximate nearest neighbor in video-based image recognition

We analyzed the way to increase computational efficiency of video-based image recognition methods with matching of high dimensional feature vectors extracted by deep convolutional neural networks. We proposed an algorithm for approximate nearest neighbor search. At the first step, for a given video frame the algorithm verifies a reference image obtained when recognizing the previous frame. After that the frame is compared with a few number of reference images. Each next examined reference image is chosen so that to maximize conditional probability density of distances to the reference instances tested at previous steps. To decrease the required memory space we beforehand calculate only distances from all the images to small number of instances (pivots). When experimenting with either face photos from Labeled Faces in the Wild and PubFig83 datasets or with video data from YouTube Faces we showed that our algorithm allows accelerating the recognition procedure by 1.4–4 times comparing with known approximate nearest neighbor methods.

*Full text (PDF, 122 Kb)*

The article is devoted to pattern recognition task with the database containing small number of samples per class. By mapping of local continuous feature vectors to a discrete range, this problem is reduced to statistical classification of a set of discrete finite patterns. It is demonstrated that Bayesian decision under the assumption that probability distributions can be estimated using the Parzen kernel and the Gaussian window with a fixed variance for all the classes, implemented in the PNN, is not optimal in the classification of a set of patterns. We presented here the novel modification of the PNN with homogeneity testing which gives an optimal solution of the latter task under the same assumption about probability densities. By exploiting the discrete nature of patterns our modification prevents the well-known drawbacks of the memory-based approach implemented in both the PNN and the PNN with homogeneity testing, namely, low classification speed and high requirements to the memory usage. Our modification only requires the storage and processing of the histograms of input and training samples. We present the results of an experimental study in two practically important tasks: 1) the problem of Russian text authorship attribution with character n-grams features; and 2) face recognition with well-known datasets (AT&T, FERET and JAFFE) and comparison of color- and gradient-orientation histograms. Our results support the statement that the proposed network provides better accuracy (1-7%) and is much more resistant to change of the smoothing parameter of Gaussian kernel function in comparison with the original PNN.

The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.

The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.

Intelligent Systems Conference (IntelliSys) 2018 is the fourth research conference in the series. This conference is a part of SAI conferences being held since 2013. The conference series has featured keynote talks, special sessions, poster presentation, tutorials, workshops, and contributed papers each year. The conference focus on areas of intelligent systems and artificial intelligence (AI) and how it applies to the real world. IntelliSys is one of the best respected Artificial Intelligence (AI) Conference.

Autonomous taxies are in high demand for smart city scenario. Such taxies have a well specified path to travel. Therefore, these vehicles only required two important parameters. One is detection parameter and other is control parameter. Further, detection parameters require turn detection and obstacle detection. The control parameters contain steering control and speed control. In this paper a novel autonomous taxi model has been proposed for smart city scenario. Deep learning has been used to model the human driver capabilities for the autonomous taxi. A hierarchical Deep Neural Network (DNN) architecture has been utilized to train various driving aspects. In first level, the proposed DNN architecture classifies the straight and turning of road. A parallel DNN is used to detect obstacle at level one. In second level, the DNN discriminates the turning i.e. left or right for steering and speed controls. Two multi layered DNNs have been used on Nvidia Tesla K 40 GPU based system with Core i-7 processor. The mean squared error (MSE) for the detection parameters viz. speed and steering angle were 0.018 and 0.0248 percent, respectively, with 15 milli seconds of realtime response delay.

On the informatics and the software sides the questions of practical security are linked to the unstructured information processing algorithms applicable for the video array frames obtained by cross platform registration systems. Compression solutions become crucially important when the temporal evolution of the video stream exceeds the traffic capacity of the communication network. The basic image processing approach we exploited is to maintain of the highest resolution degree for the main part of the object we survey (for example, a man’s face or figure) whilst minimizing the information traffic from the image background by its artificial substitution with a homogeneous color filling. This method allowed us to obtain a significant compression rate (up to 7000).

The article is devoted to the problem of image recognition in real-time applications with a large database containing hundreds of classes. The directed enumeration method as an alternative to exhaustive search is examined. This method has two advantages. First, it could be applied with measures of similarity which do not satisfy metric properties (chi-square distance, Kullback-Leibler information discrimination, etc). Second, the directed enumeration method increases recognition speed even in the most difficult cases which seem to be very important in practical terms. In these cases many neighbors are located at very similar distances. In this paper we present the results of an experimental study of the directed enumeration method with comparison of color- and gradient-orientation histograms in solving the problem of face recognition with well-known datasets (Essex, FERET). It is shown that the proposed method is characterized by increased computing efficiency of automatic image recognition (3-12 times in comparison with a conventional nearest neighbor classifier).

An ensemble of classifiers has been built to solve the problem of video image recognition. The paper offers a way to estimate the a posteriori probability of an image belonging to a particular class in the case of an arbitrary distance and nearest neighbor method. The estimation is shown to be equivalent to the optimal naive Bayesian estimate given Kullback-Leibler divergence being used as proximity measure. The block diagram of a video image recognition system is presented. The system features automatic adaptation of the list of images of identical objects which is fed to the committee machine input. The system is tested in face recognition task using popular data bases (FERET, AT&T, Yale) and the results are discussed.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.

It is well-known that the class of sets that can be computed by polynomial size circuits is equal to the class of sets that are polynomial time reducible to a sparse set. It is widely believed, but unfortunately up to now unproven, that there are sets in EXPNP, or even in EXP that are not computable by polynomial size circuits and hence are not reducible to a sparse set. In this paper we study this question in a more restricted setting: what is the computational complexity of sparse sets that are *selfreducible*? It follows from earlier work of Lozano and Torán (in: Mathematical systems theory, 1991) that EXPNP does not have sparse selfreducible hard sets. We define a natural version of selfreduction, tree-selfreducibility, and show that NEXP does not have sparse tree-selfreducible hard sets. We also construct an oracle relative to which all of EXP is reducible to a sparse tree-selfreducible set. These lower bounds are corollaries of more general results about the computational complexity of sparse sets that are selfreducible, and can be interpreted as super-polynomial circuit lower bounds for NEXP.