### Article

## Numerical optimization for Artificial Retina Algorithm

High-energy physics experiments rely on reconstruction of the trajectories of particles produced at the interaction point. This is a challenging task, especially in the high track multiplicity environment generated by p-p collisions at the LHC energies. A typical event includes hundreds of signal examples (interesting decays) and a significant amount of noise (uninteresting examples). This work describes a modification of the Artificial Retina algorithm for fast track finding: numerical optimization methods were adopted for fast local track search. This approach allows for considerable reduction of the total computational time per event. Test results on simplified simulated model of LHCb VELO (VErtex LOcator) detector are presented. Also this approach is well-suited for implementation of paralleled computations as GPGPU which look very attractive in the context of upcoming detector upgrades.

Reconstruction and identification in calorimeters of modern High Energy Physics experiments is a complicated task. Solutions are usually driven by a priori knowledge about expected properties of reconstructed objects. Such an approach is also used to distinguish single photons in the electromagnetic calorimeter of the LHCb detector on LHC from overlapping photons produced from high momentum pi0 decays. We studied an alternative solution based on applying machine learning techniques to primary calorimeter information, that are energies collected in individual cells around the energy cluster. Constructing such a discriminator from “first principles” allowed improve separation performance from 80% to 93%, that means reducing primary photons fake rate by factor of two. In presentation we discuss different approaches to the problem, architecture of the classifier, its optimization, and compare performance of the ML approach with classical one.

The production of W and Z bosons in association with jets is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ± 0.02 fb−1 . The W boson is identified using its decay to a muon and a neutrino, while the Z boson is identified through its decay to a muon pair. Total cross-sections are measured and combined into charge ratios, asymmetries, and ratios of W+jet and Z+jet production cross-sections. Differential measurements are also performed as a function of both boson and jet kinematic variables. All results are in agreement with Standard Model predictions.

Book include abstracts of reports presented at the IX International Conference on Optimization Methods and Applications "Optimization and applications" (OPTIMA-2018) held in Petrovac, Montenegro, October 1 - October 5, 2018.

Stochastic Local Search (SLS) is one of the most popular approaches to Boolean satisfiability problem and solvers based on this algorithm have made a substantial progress over the years. However, nearly all state of the art SLS solvers do not attempt to find a good starting point, instead using random values. We present a heuristic for finding an initial assignment based on non-linear optimization of continuous extension of given Boolean formula. This heuristic works by optimizing continuous function that represents the formula and then converting the result into discrete values. We also provide experimental evaluation of new heuristic implemented in ProbSAT solver.

Optimization, simulation and control are very powerful tools in engineering and mathematics, and play an increasingly important role. Because of their various real-world applications in industries such as finance, economics, and telecommunications, research in these fields is accelerating at a rapid pace, and there have been major algorithmic and theoretical developments in these fields in the last decade.

This volume brings together the latest developments in these areas of research and presents applications of these results to a wide range of real-world problems.

- Collection of selected contributions giving a state-of-the-art account of recent developments in the field - Covers a broad range of topics in optimization and optimal control, including unique applications - Written by an international group of experts in their respective disciplines - Broad audience of researchers, practitioners, and advanced graduate students in applied mathematics and engineeringWe propose a new method of feature extraction for regression problems with text data that transforms the sparse texts to dense features using regularized topic models. We also discuss the problem of topic model initialization, and propose a new approach based on Naive Bayes. This approach is compared to many others, and it achieves a quality comparable to vector space models using as little as ten topics. It also outperforms other methods for feature generation based on topic modeling, such as PLSA and Supervised LDA.

A full amplitude analysis of Λ 0 b → J/ψ pπ− decays is performed with a data sample acquired with the LHCb detector from 7 and 8 TeV pp collisions, corresponding to an integrated luminosity of 3 fb−1 . A significantly better description of the data is achieved when, in addition to the previously observed nucleon excitations N → pπ−, either the Pc(4380)+ and Pc(4450)+ → J/ψ p states, previously observed in Λ 0 b → J/ψ pK− decays, or the Zc(4200)− → J/ψ π− state, previously reported in B0 → J/ψ K+π − decays, or all three, are included in the amplitude models. The data support a model containing all three exotic states, with a significance of more than three standard deviations. Within uncertainties, the data are consistent with the Pc(4380)+ and Pc(4450)+ production rates expected from their previous observation taking account of Cabibbo suppression.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

It is well-known that the class of sets that can be computed by polynomial size circuits is equal to the class of sets that are polynomial time reducible to a sparse set. It is widely believed, but unfortunately up to now unproven, that there are sets in EXPNP, or even in EXP that are not computable by polynomial size circuits and hence are not reducible to a sparse set. In this paper we study this question in a more restricted setting: what is the computational complexity of sparse sets that are *selfreducible*? It follows from earlier work of Lozano and Torán (in: Mathematical systems theory, 1991) that EXPNP does not have sparse selfreducible hard sets. We define a natural version of selfreduction, tree-selfreducibility, and show that NEXP does not have sparse tree-selfreducible hard sets. We also construct an oracle relative to which all of EXP is reducible to a sparse tree-selfreducible set. These lower bounds are corollaries of more general results about the computational complexity of sparse sets that are selfreducible, and can be interpreted as super-polynomial circuit lower bounds for NEXP.

The Handbook of CO₂ in Power Systems' objective is to include the state-of-the-art developments that occurred in power systems taking CO₂ emission into account. The book includes power systems operation modeling with CO₂ emissions considerations, CO₂ market mechanism modeling, CO₂ regulation policy modeling, carbon price forecasting, and carbon capture modeling. For each of the subjects, at least one article authored by a world specialist on the specific domain is included.

By using superconducting quantum interference device (SQUID) magnetometry, we investigated anisotropic high-field (H less than or similar to 7T) low-temperature (10 K) magnetization response of inhomogeneous nanoisland FeNi films grown by rf sputtering deposition on Sitall (TiO2) glass substrates. In the grown FeNi films, the FeNi layer nominal thickness varied from 0.6 to 2.5 nm, across the percolation transition at the d(c) similar or equal to 1.8 nm. We discovered that, beyond conventional spin-magnetism of Fe21Ni79 permalloy, the extracted out-of-plane magnetization response of the nanoisland FeNi films is not saturated in the range of investigated magnetic fields and exhibits paramagnetic-like behavior. We found that the anomalous out-of-plane magnetization response exhibits an escalating slope with increase in the nominal film thickness from 0.6 to 1.1 nm, however, it decreases with further increase in the film thickness, and then practically vanishes on approaching the FeNi film percolation threshold. At the same time, the in-plane response demonstrates saturation behavior above 1.5-2T, competing with anomalously large diamagnetic-like response, which becomes pronounced at high magnetic fields. It is possible that the supported-metal interaction leads to the creation of a thin charge-transfer (CT) layer and a Schottky barrier at the FeNi film/Sitall (TiO2) interface. Then, in the system with nanoscale circular domains, the observed anomalous paramagnetic-like magnetization response can be associated with a large orbital moment of the localized electrons. In addition, the inhomogeneous nanoisland FeNi films can possess spontaneous ordering of toroidal moments, which can be either of orbital or spin origin. The system with toroidal inhomogeneity can lead to anomalously strong diamagnetic-like response. The observed magnetization response is determined by the interplay between the paramagnetic-and diamagnetic-like contributions.