Article
Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients
This work is concerned with the optimal control problems governed by the 1D wave equation with variable coefficients and the control spaces $\mathcal M_T$ of either measure-valued functions $L^2(I,\mathcal M(\Omega))$ or vector measures $\mathcal M(\Omega,L^2(I))$. The cost functional involves the standard quadratic terms and the regularization term $\alpha\|u\|_{\mathcal M_T}$, $\alpha>0$. We construct and study three-level in time bilinear finite element discretizations for the problems. The main focus lies on the derivation of error estimates for the optimal state variable and the error measured in the cost functional. The analysis is mainly based on some previous results of the authors. The numerical results are included.
Models enabling to assess stability of solutions connected with the choice of the optimal production plan are presented in the article. The optimal production plan ensures the maximum profit for the company under input restraints. At the same time in the standard model supplementary variable is added which reflects inflation rate in the economy. Within the framework of current task this variable reflects external environment change. While developing models stability intervals for , production plans were defined, such as threshold levels of inflation, when the shift from one production plan to another takes place.
The chapter studies a dynamic risk model defined on infinite time interval, where both insurance and per-claim reinsurance policies are chosen by the insurer in order to minimize a functional of the form of variation coefficient under constraints imposed with probability one on insured's and reinsurer's risks. We show that the optimum is achieved at constant policies, the optimal reinsurance is a partial stop loss reinsurance and the optimal insurance is a combination of stop loss and deductible policies. The results are illustrated by a numerical example involving uniformly distributed claim sizes.
A scalable method for mining graph patterns stable under subsampling is proposed. The existing subsample stability and robustness measures are not antimonotonic according to definitions known so far. We study a broader notion of antimonotonicity for graph patterns, so that measures of subsample stability become antimonotonic. Then we propose gSOFIA for mining the most subsample-stable graph patterns. The experiments on numerous graph datasets show that gSOFIA is very efficient for discovering subsample-stable graph patterns.
An initial–boundary value problem for the generalized Schrödinger equation in a semi-infinite strip is solved.
A new family of two level finite-difference schemes with averaging over spatial variables on a finite mesh is constructed, which covers a set of finite-difference schemes built using various methods. For the family, an abstract approximate transparent boundary condition (TBC) is formulated and the solutions are proved to be absolutely stable in two norms with respect to both initial data and free terms. A discrete TBC is derived, and the stability of the family of schemes with this TBC is proved. The implementation of schemes with the discrete TBC is discussed.
The object of study of this paper is a regional economic system which is complex, dynamic and developable by nature. The reproduction of material wealth necessary for the region is provided in the process of functioning of the above system through the interaction between the combinations of subjective (personal) and objective (material) elements, thereby meeting regional environmental and economic needs.
We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.
We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.
We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.
The problem of minimizing the root mean square deviation of a uniform string with clamped ends from an equilibrium position is investigated. It is assumed that the initial conditions are specified and the ends of the string are clamped. The Fourier method is used, which enables the control problem with a partial differential equation to be reduced to a control problem with a denumerable system of ordinary differential equations. For the optimal control problem in the l2 space obtained, it is proved that the optimal synthesis contains singular trajectories and chattering trajectories. For the initial problem of the optimal control of the vibrations of a string it is also proved that there is a unique solution for which the optimal control has a denumerable number of switchings in a finite time interval.
For a class of optimal control problems and Hamiltonian systems generated by these problems in the space l 2, we prove the existence of extremals with a countable number of switchings on a finite time interval. The optimal synthesis that we construct in the space l 2 forms a fiber bundle with piecewise smooth two-dimensional fibers consisting of extremals with a countable number of switchings over an infinite-dimensional basis of singular extremals.
This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.
In this paper, we construct a new distribution corresponding to a real noble gas as well as the equation of state for it.