### Article

## Irreversible magnetization switching at the onset of superconductivity in a superconductor ferromagnet hybrid

We demonstrate that the magnetic state of a superconducting spin valve, that is normally controlled with an external magnetic field, can also be manipulated by varying the temperature which increases the functionality and flexibility of such structures as switching elements. In this case, switching is driven by changes in the magnetostatic energy due to spontaneous Meissner screening currents forming in the superconductor below the critical temperature. Our scanning Hall probe measurements also reveal vortex-mediated pinning of the ferromagnetic domain structure due to the pinning of quantized stray fields in the adjacent superconductor. The ability to use temperature as well as magnetic field to control the local magnetisation structure raises the prospect of potential applications in magnetic memory devices.

We study the effect of the Fermi surface anisotropy (hexagonal warping) on the superconducting pair potential, induced in a three-dimensional topological insulator (TI) by proximity with an s-wave superconductor (S) in presence of a magnetic moment of a nearby ferromagnetic insulator (FI). In the previous studies similar problem was treated with a simplified Hamiltonian, describing an isotropic Dirac cone dispersion. This approximation is only valid near the Dirac point. However, in topological insulators the chemical potential often lies well above this point, where the Dirac cone is strongly anisotropic and its constant energy contour has a snowflake shape. Taking this shape into account we show that a very exotic pair potential is induced in the topological insulator surface. Based on the symmetry arguments we also discuss the possibility of a supercurrent flowing along the S/FI boundary, when a S/FI hybrid structure is formed on the TI surface.

We investigate numerically the formation of vortex–antivortex pairs in thin-film superconducting strip in the presence of a straight current-carrying wire, oriented perpendicular to this strip. We demonstrate that the change in the number of the trapped vortices/antivortices inside the strip near the current-carrying wire results in a oscillatory dependence of the critical current Ic on the magnitude of the control current Iw in the wire. We consider the effect of the width of the superconducting strip and the width of the control wire on the period and the amplitude of the dc-Josephson-like oscillations of the critical current.

Using the Usadel equation approach, we have calculated the critical current density in ferromagnetic (F) Josephson junctions of different types containing insulating (I) and normal metal (N) layers in the weak link region. Even a thin additional N layer may change the boundary conditions at the SF or IF interface, where S is a superconducting electrode. We show that inserting an N layer may increase the critical current density Jc and shift the 0- transition to larger or smaller values of the thickness dF of the ferromagnet, depending on the boundary parameters.

In the original paper the affiliation of A.S. Aladyshkina was indicated incorrectly. The correct affiliations of all authors are as follows:

A.Yu. Aladyshkin., (1) I.M. Nefedov(1), A.S. Aladyshkina(2) and I.A. Shereshevskii(1). (1) Institute for Physics of Microstructures, Russian Academy of Sciences, GSP.105, Nizhny Novgorod 603950, Russia (2) National Research University Higher School of Economics, 25/12 Bolshaja Pecherskaja Ulitsa, Nizhny Novgorod 603155, Russia

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

This volume presents new results in the study and optimization of information transmission models in telecommunication networks using different approaches, mainly based on theiries of queueing systems and queueing networks .

The paper provides a number of proposed draft operational guidelines for technology measurement and includes a number of tentative technology definitions to be used for statistical purposes, principles for identification and classification of potentially growing technology areas, suggestions on the survey strategies and indicators. These are the key components of an internationally harmonized framework for collecting and interpreting technology data that would need to be further developed through a broader consultation process. A summary of definitions of technology already available in OECD manuals and the stocktaking results are provided in the Annex section.