We study the case where the values of random variables increase without bound.

We single out the main features of the mathematical theory of noble gases. It is proved that the points of degeneracy of the Bose gas fractal dimension in momentum space coincide with the critical points of noble gases, while the jumps of the critical indices and the Maxwell rule are related to tunnel quantization in thermodynamics. We consider semiclassical methods for tunnel quantization in thermodynamics as well as those for second and ultrasecond quantization (the creation and annihilation operators for pairs of particles). Each noble gas is associated with a new critical point of the limit negative pressure. The negative pressure is equivalent to covering the (P,Z) diagram by the second sheet.

CAD sybsystem for logi-thermal analysis of the digital circuits is presented. Logical circuits are described by VHDL language. Thermal regimes are calculated by electro-thermal analogy method. For the calculation of the thermal resistances and capacitances the thermal 3D simulator Overheat-IC based on semi-analytical solution of three-dimensional heat conduction equation is used. For simultaneous calculation of logical and thermal characteristics of IC analog and mixed-signal simulator Questa ADMS is used.

We single out the main features of the mathematical theory of noble gases. It is proved that the points of degeneracy of the Bose gas fractal dimension in momentum space coincide with the critical points of noble gases, while the jumps of the critical indices and the Maxwell rule are related to tunnel quantization in thermodynamics. We consider semiclassical methods for tunnel quantization in thermodynamics as well as those for second and ultrasecond quantization (the creation and annihilation operators for pairs of particles). Each noble gas is associated with a new critical point of the limit negative pressure. The negative pressure is equivalent to covering the (P,Z)- diagram by the second sheet.