### Article

## Vertices of FFLV polytopes

FFLV polytopes describe monomial bases in irreducible representations of (Formula presented.) and (Formula presented.). We study various sets of vertices of FFLV polytopes. First, we consider the special linear case. We prove the locality of the set of vertices with respect to the type A Dynkin diagram. Then we describe all the permutation vertices and after that we describe all the simple vertices and prove that their number is equal to the large Schröder number. Finally, we derive analogous results for symplectic Lie algebras.

It has been shown recently that the normalized median Genocchi numbers are equal to the Euler characteristics of the degenerate flag varieties. The q-analogues of the Genocchi numbers can be naturally defined as the Poincare polynomials of the degenerate flag varieties. We prove that the generating function of the Poincare polynomials can be written as a simple continued fraction. As an application we prove that the Poincare polynomials coincide with the q-version of the normalized median Genocchi numbers introduced by Han and Zeng.

In this paper we investigate the growth with respect to *p* of dimensions of irreducible representations of a semisimple Lie algebra g over F¯¯¯*p*. More precisely, it is known that for *p*≫0, the irreducibles with a regular rational central character *λ* and *p*-character *χ* are indexed by a certain canonical basis in the *K*0 of the Springer fiber of *χ*. This basis is independent of *p*. For a basis element, the dimension of the corresponding module is a polynomial in *p*. We show that the canonical basis is compatible with the two-sided cell filtration for a parabolic subgroup in the affine Weyl group defined by *λ*. We also explain how to read the degree of the dimension polynomial from a filtration component of the basis element. We use these results to establish conjectures of the second author and Ostrik on a classification of the finite dimensional irreducible representations of W-algebras, as well as a strengthening of a result by the first author with Anno and Mirkovic on real variations of stabilities for the derived category of the Springer resolution.

We review the recent progress in the theory of Poincaré–Birkhoff–Witt degenerations of irreducible representations of simple Lie algebras. We describe algebraic, geometric, and combinatorial aspects of the theory.

We study geometric and combinatorial properties of the degenerate flag varieties of type A. These varieties are acted upon by the automorphism group of a certain representation of a type A quiver, containing a maximal torus T . Using the group action, we describe the moment graphs, encoding the zero- and one-dimensional T -orbits. We also study the smooth and singular loci of the degenerate flag varieties. We show that the Euler characteristic of the smooth locus is equal to the large Schröder number and the Poincaré polynomial is given by a natural statistics counting the number of diagonal steps in a Schröder path. As an application we obtain a new combinatorial description of the large and small Schröder numbers and their q-analogues.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.