### Article

## Kinematic magnetic dynamo in a random flow with strong average shear

We analyze the kinematic dynamo in a conducting fluid where the stationary shear flow is accompanied by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing the divergence of Lagrangian trajectories. A degree of anisotropy of the magnetic field is estimated. We demonstrate that Zeldovich’s ‘antidynamo theorem’ is wrong.

We suggest a new model of the fast nondissipative kinematic dynamo which describes the phenomenon of exponential growth of the magnetic eld caused by the motion of the conducting medium. This phenomenon is known to occur in the evolution of magnetic elds of astrophysical bodies. In the 1970s A.D. Sakharov and Ya.B. Zeldovich proposed a \rope" scheme of this process which in terms of the modern theory of dynamical systems can be described as Smale solenoid. The main disadvantage of this scheme is that it is non-conservative. Our model is a modication of the Sakharov-Zeldovich's model. We apply methods of the theory of dynamical systems to prove that it is free of this fault in the neighborhood of the nonwandering set.

This classic survey considers passive scalar and vector transport processes in a random nonstationary medium, which are described by linear parabolic equations. Integration over random paths is used, along with the asymptotic behavior of the product of a large number of independent identically distributed random matrices. The most interesting effect is the appearance of concentrated structures (intermittency) of a smooth initial distribution of the transported quantity. The occurrence of intermittent distributions in the linear problem is due to the fact that the coefficients of the transport equation are stochastic. The intermittency shows itself in the rates of exponential growth of the successive moments (Lyapunov exponents) as the moment number increases. Moment equations are obtained for the scalar and vector, and are used to study temperature evolution and magnetic-field generation in a random fluid flow. These equations are differential in a medium with short time correlations and integral in the general case. The range of application of the diffusion description is analyzed. The behavior of the diffusion coefficients in the case of time reversal is examined. The properties of an individual realization of a scalar and vector are also explained, and a dynamo theorem is given on the exponential growth of the magnetic field in a random flow with renewal.

We analyze magnetic kinematic dynamo in a conducting fluid where the stationary shear flow is accompanied by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing divergence of the Lagrangian trajectories. The magnetic field correlation functions are examined, we establish their growth rates and scaling behavior. General assertions are illustrated by explicit solution of the model where the velocity field is short-correlated in time.

A model of scalar turbulent advection in compressible flow is analytically investigated. It is shown that, depending on the dimensionality d of space and the degree of compressibility of the smooth advecting velocity field, the cascade of the scalar is direct or inverse. If d>4 the cascade is always direct. For a small enough degree of compressibility, the cascade is direct again. Otherwise it is inverse; i.e., very large scales are excited. The dynamical hint for the direction of the cascade is the sign of the Lyapunov exponent for particles separation. Positive Lyapunov exponents are associated to direct cascade and Gaussianity at small scales. Negative Lyapunov exponents lead to inverse cascade, Gaussianity at large scales, and strong intermittency at small scales.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.