### Article

## Dynamics of the Davydov-Scott soliton with location or velocity mismatch of its high-frequency component

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

The complex phenomena of the individual creative activities as well as the historical development of scientific knowledge are under consideration from the point of view of the theory of self-organization (synergetics) in the book. Synergetics is characterized as a new research programme in a wide philosophical, cultural and historical context. The synergetical reinterpretations of some peculiarities of the creative thinking, such as the alternative ways and the scenarios, the latent attitudes and the predeterminations, the self-completing of whole images, are proposed here. The synergetical view of historical development of scientific knowledge is compiled in the book from the notions of the principal nonlinearity and cyclic character of science development,the inertia of the paradigmal consciousness in science, the value of marginal and archaic elements in science. For readers who are interested in evolutionary epistemology and the philosophical problems of synergetics.

The paper presents a framework for numerical simulation that allows you to ensure saving of resources due to the numerical selection of the optimal size and temperatures in the preparation of bimetallic castings. Modeling obtained boundary and initial conditions at which the metal parts submelting first layer in the contact area with the second layer and is saved in the unmelted state of the first layer with a thickness of 1.5-2 mm, which is in contact with the mold.

The effect of dielectric supports on the slowing factor and dispersion of the helical line in TWT is considered. A method for the calculation of the slowing down in the helical line with the complicated configuration of the dielectric supports is proposed. A procedure for the experimental study of dispersion in the helical slow_wave system is presented. The calculated results are compared with the experimental data.

A TWT model formed by a meta-magnetic plate and a metal screen is offered and analyzed. The dispersion equation of the model in the presence of a homogeneous electron beam filling the space between the plate and the screen is derived and solved. The coupling and depression coefficients are calculated by the method of differentiation the dispersion equation. The calculated characteristics are compared with the TWT models on a dielectric plate and an “impedance” comb.

A new mathematical model of heat transfer in silicon field emission pointed cathode of small dimensions is constructed which permits taking its partial melting into account. This mathematical model is based on the phase field system, i.e., on a contemporary generalization of Stefan-type problems. The approach used by the authors is not purely mathematical but is based on the understanding of the solution structure (construction and study of asymptotic solutions) and computer calculations. The book presents an algorithm for numerical solution of the equations of the obtained mathematical model including its parallel implementation. The results of numerical simulation conclude the book.

The book is intended for specialists in the field of heat transfer and field emission processes and can be useful for senior students and postgraduates.

This paper deals with the implementation of numerical methods for searching for traveling waves for Korteweg-de Vries-type equations with time delay. Based upon the group approach, the existence of traveling wave solution and its boundedness are shown for some values of parameters. Meanwhile, solutions constructed with the help of the proposed constructive method essentially extend the class of systems, possessing solutions of this type, guaranteed by theory. The proposed method for finding solutions is based on solving a multiparameter extremal problem. Several numerical solutions are demonstrated.

Generalized error-locating codes are discussed. An algorithm for calculation of the upper bound of the probability of erroneous decoding for known code parameters and the input error probability is given. Based on this algorithm, an algorithm for selection of the code parameters for a specified design and input and output error probabilities is constructed. The lower bound of the probability of erroneous decoding is given. Examples of the dependence of the probability of erroneous decoding on the input error probability are given and the behavior of the obtained curves is explained.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.