### Article

## Trivalent logics arising from L-models for the Lambek calculus with constants

We consider language models for the Lambek calculus that allow empty antecedents and enrich them with constants for the empty language and for the language containing only the empty word. No complete calculi are known with respect to these semantics, and in this paper we consider several trivalent systems that arise as fragments of these models’ logics.

The Lambek calculus can be considered as a version of non-commutative intuitionistic linear logic. One of the interesting features of the Lambek calculus is the so-called ‘Lambek’s restriction’, i.e. the antecedent of any provable sequent should be non-empty. In this paper, we discuss ways of extending the Lambek calculus with the linear logic exponential modality while keeping Lambek’s restriction. Interestingly enough, we show that for any system equipped with a reasonable exponential modality the following holds: if the system enjoys cut elimination and substitution to the full extent, then the system necessarily violates Lambek’s restriction. Nevertheless, we show that two of the three conditions can be implemented. Namely, we design a system with Lambek’s restriction and cut elimination and another system with Lambek’s restriction and substitution. For both calculi, we prove that they are undecidable, even if we take only one of the two divisions provided by the Lambek calculus. The system with cut elimination and substitution and without Lambek’s restriction is folklore and known to be undecidable.

We use proof-nets to study the algorithmic complexity of the derivability problem for some fragments of the Lambek calculus. We prove the NP-completeness of this problem for the unidirectional fragment and the product-free fragment, and also for versions of these fragments that admit empty antecedents.

In this paper we prove that the derivability problems for product-free Lambek calculus and product-free Lambek calculus allowing empty premises are NP-complete. Also we introduce a new derivability characterization for these calculi.

Logical frameworks allow the specification of deductive systems using the same logical machinery. Linear logical frameworks have been successfully used for the specification of a number of computational, logics and proof systems. Its success relies on the fact that formulas can be distinguished as linear, which behave intuitively as resources, and unbounded, which behave intuitionistically. Commutative subexponentials enhance the expressiveness of linear logic frameworks by allowing the distinction of multiple contexts. These contexts may behave as multisets of formulas or sets of formulas. Motivated by applications in distributed systems and in type-logical grammar, we propose a linear logical framework containing both commutative and non-commutative subexponentials. Non-commutative subexponentials can be used to specify contexts which behave as lists, not multisets, of formulas. In addition, motivated by our applications in type-logical grammar, where the weakenening rule is disallowed, we investigate the proof theory of formulas that can only contract, but not weaken. In fact, our contraction is non-local. We demonstrate that under some conditions such formulas may be treated as unbounded formulas, which behave intuitionistically.

The Lambek calculus is a well-known logical formalism for modelling natural language syntax. The original calculus covered a substantial number of intricate natural language phenomena, but only those restricted to the context-free setting. In order to address more subtle linguistic issues, the Lambek calculus has been extended in various ways. In particular, Morrill and Valentín (2015) introduce an extension with so-called exponential and bracket modalities. Their extension is based on a non-standard contraction rule for the exponential that interacts with the bracket structure in an intricate way. The standard contraction rule is not admissible in this calculus. In this paper we prove undecidability of the derivability problem in their calculus. We also investigate restricted decidable fragments considered by Morrill and Valentín and we show that these fragments belong to the NP class.

The Lambek calculus can be considered as a version of non-commutative intuitionistic linear logic. One of the interesting features of the Lambek calculus is the so-called “Lambek’s restriction,” that is, the antecedent of any provable sequent should be non-empty. In this paper we discuss ways of extending the Lambek calculus with the linear logic exponential modality while keeping Lambek’s restriction. We present several versions of the Lambek calculus extended with exponential modalities and prove that those extensions are undecidable, even if we take only one of the two divisions provided by the Lambek calculus.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.