Article
Breaking Sticks and Ambiguities with Adaptive Skip-gram
The recently proposed Skip-gram model is a powerful method for learning high-dimensional word representations that capture rich semantic relationships between words. However, Skip-gram as well as most prior work on learning word representations does not take into account word ambiguity and maintain only single representation per word. Although a number of Skip-gram modifications were proposed to overcome this limitation and learn multi-prototype word representations, they either require a known number of word meanings or learn them using greedy heuristic approaches. In this paper we propose the Adaptive Skip-gram model which is a nonparametric Bayesian extension of Skip-gram capable to automatically learn the required number of representations for all words at desired semantic resolution. We derive efficient online variational learning algorithm for the model and empirically demonstrate its efficiency on word-sense induction task.
Intelligent Systems Conference (IntelliSys) 2018 is the fourth research conference in the series. This conference is a part of SAI conferences being held since 2013. The conference series has featured keynote talks, special sessions, poster presentation, tutorials, workshops, and contributed papers each year. The conference focus on areas of intelligent systems and artificial intelligence (AI) and how it applies to the real world. IntelliSys is one of the best respected Artificial Intelligence (AI) Conference.
The performance of machine learning methods is heavily dependent on the choice of data representation (or features) on which they are applied. The rapidly developing field of deep learning is concerned with questions surrounding how we can best learn meaningful and useful representations of data. We take a broad view of the field and include topics such as feature learning, metric learning, compositional modeling, structured prediction, reinforcement learning, and issues regarding large-scale learning and non-convex optimization. The range of domains to which these techniques apply is also very broad, from vision to speech recognition, text understanding, gaming, music, etc.
Autonomous taxies are in high demand for smart city scenario. Such taxies have a well specified path to travel. Therefore, these vehicles only required two important parameters. One is detection parameter and other is control parameter. Further, detection parameters require turn detection and obstacle detection. The control parameters contain steering control and speed control. In this paper a novel autonomous taxi model has been proposed for smart city scenario. Deep learning has been used to model the human driver capabilities for the autonomous taxi. A hierarchical Deep Neural Network (DNN) architecture has been utilized to train various driving aspects. In first level, the proposed DNN architecture classifies the straight and turning of road. A parallel DNN is used to detect obstacle at level one. In second level, the DNN discriminates the turning i.e. left or right for steering and speed controls. Two multi layered DNNs have been used on Nvidia Tesla K 40 GPU based system with Core i-7 processor. The mean squared error (MSE) for the detection parameters viz. speed and steering angle were 0.018 and 0.0248 percent, respectively, with 15 milli seconds of realtime response delay.
It has been shown that the activations invoked by an image within the top layers of a large convolutional neural network provide a high-level descriptor of the visual content of the image. In this paper, we investigate the use of such descriptors (neural codes) within the image retrieval application. In the experiments with several standard retrieval benchmarks, we establish that neural codes perform competitively even when the convolutional neural network has been trained for an unrelated classification task (e.g. Image-Net). We also evaluate the improvement in the retrieval performance of neural codes, when the network is retrained on a dataset of images that are similar to images encountered at test time. We further evaluate the performance of the compressed neural codes and show that a simple PCA compression provides very good short codes that give state-of-the-art accuracy on a number of datasets. In general, neural codes turn out to be much more resilient to such compression in comparison other state-of-the-art descriptors. Finally, we show that discriminative dimensionality reduction trained on a dataset of pairs of matched photographs improves the performance of PCA-compressed neural codes even further. Overall, our quantitative experiments demonstrate the promise of neural codes as visual descriptors for image retrieval.
Brain-computer interfaces find application in a number of different areas and have the potential to be used for research as well as for practical purposes. The clinical use of BCI includes current studies on neurorehabilitation ([Frolov et al., 2013; Ang et al., 2010]), and there is the prospect of using BCI to restore movement and communication capabilities, providing alternative effective pathways to those that may be lost due to injury or illness. The processing of electrophysiological data requires analysis of high-dimensional, nonstationary, noisy signals reflecting complex underlying processes and structures. We have shown that for non-invasive neuroimaging methods such as EEG the potential improvement lies in the field of machine learning and involves designing data analysis algorithms that can model physiological and psychoemotional variability of the user. The development of such algorithms can be conducted in different ways, including the classical Bayesian paradigm as well as modern deep learning architectures. The interpretation of nonlinear decision rules implemented by multilayer structures would enable automatic and objective knowledge extraction from the neurocognitive experiments data. Despite the advantages of non-invasive neuroimaging methods, a radical increase in the bandwidth of the BCI communication channel and the use of this technology for the prosthesis control is possible only through invasive technologies. Electrocorticogram (ECoG) is the least invasive of such technologies, and in the final part of this work we demonstrate the possibility of using ECoG to decode the kinematic characteristics of the finger movement.
Recently proposed distance dependent Chinese Restaurant Process (ddCRP) generalizes extensively used Chinese Restaurant Process (CRP) by accounting for dependencies between data points. Its posterior is intractable and so far only MCMC methods were used for inference. Because of very different nature of ddCRP no prior developments in variational methods for Bayesian nonparametrics are appliable. In this paper we propose novel variational inference for important sequential case of ddCRP (seqddCRP) by revealing its connection with Laplacian of random graph constructed by the process. We develop efficient algorithm for optimizing variational lower bound and demonstrate its efficiency comparing to Gibbs sampler. We also apply our variational approximation to CRPequivalent seqddCRP-mixture model, where it could be considered as alternative to one based on truncated stick-breaking representation. This allowed us to achieve significantly better variational lower bound than variational approximation based on truncated stick breaking for Dirichlet process.
We analyzed the way to increase computational efficiency of video-based image recognition methods with matching of high dimensional feature vectors extracted by deep convolutional neural networks. We proposed an algorithm for approximate nearest neighbor search. At the first step, for a given video frame the algorithm verifies a reference image obtained when recognizing the previous frame. After that the frame is compared with a few number of reference images. Each next examined reference image is chosen so that to maximize conditional probability density of distances to the reference instances tested at previous steps. To decrease the required memory space we beforehand calculate only distances from all the images to small number of instances (pivots). When experimenting with either face photos from Labeled Faces in the Wild and PubFig83 datasets or with video data from YouTube Faces we showed that our algorithm allows accelerating the recognition procedure by 1.4–4 times comparing with known approximate nearest neighbor methods.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability
The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.
It is well-known that the class of sets that can be computed by polynomial size circuits is equal to the class of sets that are polynomial time reducible to a sparse set. It is widely believed, but unfortunately up to now unproven, that there are sets in EXPNP, or even in EXP that are not computable by polynomial size circuits and hence are not reducible to a sparse set. In this paper we study this question in a more restricted setting: what is the computational complexity of sparse sets that are selfreducible? It follows from earlier work of Lozano and Torán (in: Mathematical systems theory, 1991) that EXPNP does not have sparse selfreducible hard sets. We define a natural version of selfreduction, tree-selfreducibility, and show that NEXP does not have sparse tree-selfreducible hard sets. We also construct an oracle relative to which all of EXP is reducible to a sparse tree-selfreducible set. These lower bounds are corollaries of more general results about the computational complexity of sparse sets that are selfreducible, and can be interpreted as super-polynomial circuit lower bounds for NEXP.