• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Local quasi hidden variable modelling and violations of Bell-type inequalities by a multipartite quantum state

Journal of Mathematical Physics. 2012. Vol. 53. P. 022201-1-022201-30.

We introduce for a general correlation scenario a new simulation model, a local quasi hidden variable(LqHV) model, where locality and the measure-theoretic construction inherent to a local hidden variable (LHV) model are preserved but positivity of a simulation measure is dropped. We specify a necessary and sufficient condition for LqHV modelling and, based on this, prove that every quantum correlation scenario admits a LqHV simulation. Via the LqHV approach, we construct analogs of Bell-type inequalities for an N-partite quantum state and find a new analytical upper bound on the maximal violation by an N-partite quantum state of S 1 × ⋯ × S N -setting Bell-type inequalities – either on correlation functions or on joint probabilities and for outcomes of an arbitrary spectral type, discrete or continuous. This general analytical upper bound is expressed in terms of the new state dilation characteristics introduced in the present paper and not only traces quantum states admitting an S 1 × ⋯ × S N -setting LHV description but also leads to the new exact numerical upper estimates on the maximal Bell violations for concrete N-partite quantum states used in quantum information processing and for an arbitrary N-partite quantum state. We, in particular, prove that violation by an N-partite quantum state of an arbitrary Bell-type inequality (either oncorrelation functions or on joint probabilities) for S settings per site cannot exceed (2S − 1) N − 1 even in case of an infinite dimensional quantum state and infinitely many outcomes.