### Article

## Free fermions, W-algebras, and isomonodromic deformations

We consider the theory of multicomponent free massless fermions in two dimensions and use it to construct representations of *W*-algebras at integer Virasoro central charges. We define the vertex operators in this theory in terms of solutions of the corresponding isomonodromy problem. We use this construction to obtain some new insights into tau functions of the multicomponent Toda-type hierarchies for the class of solutions given by the isomonodromy vertex operators and to obtain a useful representation for tau functions of isomonodromic deformations.

A local behavior of solutions of the Schlesinger equation is studied. We obtain expansions for this solutions, which converge in some neighborhood of a singular point. As a corollary the similar result for the sixth Painlev´e equation was obtained. In our analysis, we use the isomonodromic approach to solve this problem.

This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical results established for isomonodromic deformations of Fuchsian systems are generalized to the case of integrable deformations of meromorphic systems. Bibliography: 40 titles.

We consider systems of linear differential equations discussing some classical and modern results in the Riemann problem, isomonodromic deformations, and other related topics. Against this background, we illustrate the relations between such phenomena as the integrability, the isomonodromy, and the Painlevé property. The recent advances in the theory of isomonodromic deformations presented show perfect agreement with that approach.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.