• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Processes That Can Be Embedded in a Geometric Brownian Motion

Theory of Probability and Its Applications. 2016. Vol. 60(2). P. 246-262.
Gushchin A. A., Urusov M.

The main result of this paper is a counterpart of the theorem of Monroe [Ann. Probab., 6 (1978), pp. 42--56] for a geometric Brownian motion: A process is equivalent to a time change of a geometric Brownian motion if and only if it is a nonnegative supermartingale. We also provide a link between our main result and Monroe's [Ann. Math. Statist., 43 (1972), pp. 1293--1311]. This is based on the concept of a minimal stopping time, which is characterized in Monroe [Ann. Math. Statist., 43 (1972), pp. 1293--1311] and Cox and Hobson [Probab. Theory Related Fields, 135 (2006), pp. 395--414] in the Brownian case. Finally, we suggest a sufficient condition for minimality (for the processes other than a Brownian motion) complementing the discussion in the aforementioned papers.