### Article

## Sternberg Linearization Theorem for Skew Products

We present a special kind of normalization theorem: linearization theorem for skew products. The normal form is a skew product again, with the fiber maps linear. It appears that even in the smooth case, the conjugacy is only Hölder continuous with respect to the base. The normalization theorem mentioned above may be applied to perturbations of skew products and to the study of new persistent properties of attractors.

A one-dimensional confined nonlinear random walk is a tuple of *N* diffeomorphisms of the unit interval driven by a probabilistic Markov chain. For generic such walks, we obtain a geometric characterization of their ergodic stationary measures and prove that all of them have negative Lyapunov exponents. These measures appear to be probabilistic manifestations of physical measures for certain deterministic dynamical systems. These systems are step skew products over transitive subshifts of finite type (topological Markov chains) with the unit interval fiber.

For such skew products, we show there exist only finite collection of alternating attractors and repellers; we also give a sharp upper bound for their number. Each of them is a graph of a continuous map from the base to the fiber defined almost everywhere w.r.t. any ergodic Markov measure in the base. The orbits starting between the adjacent attractor and repeller tend to the attractor as *t* → +∞, and to the repeller as *t* → −∞. The attractors support ergodic hyperbolic physical measures.

In 2006, Gorodetski proved that central fibres of perturbed skew products are Hölder continuous with respect to the base point. In this paper, we give an explicit estimate of this Hölder exponent. Moreover, we extend Gorodetski's result from the case when the fibre maps are close to the identity to a much wider class of maps that satisfy the so-called modified dominated splitting condition. In many cases (for example, in the case of skew products over the solenoid or over linear Anosov diffeomorphisms of the torus), the Hölder exponent is close to 1. This allows one to overcome the so-called Fubini nightmare, in some sense. Namely, we prove that the union of central fibres that are strongly atypical from the point of view of ergodic theory, has Lebesgue measure zero despite the lack of absolute continuity of the holonomy map for the central foliation. This result is based on a new kind of ergodic theorem, which we call special. To prove our main result, we revisit the theory of Hirsch, Pugh and Shub, and estimate the contraction constant of the graph transform map. © 2012 IOP Publishing Ltd & London Mathematical Society.

For a generic skew product with the fiber a circle over an Anosov diffeomorphism, we prove that the Milnor attractor coincides with the statistical attractor, is Lyapunov stable, and either has zero Lebesgue measure or coincides with the whole phase space. As a consequence, we conclude that such skew product is either transitive or has non-wandering set of zero measure. The result is proved under the assumption that the fiber maps preserve the orientation of the circle, and the skew product is partially hyperbolic.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.